
如何判定你招聘的数据挖掘人员是否称职
像任何行业一样,在数据挖掘领域人员能力差别也是非常大的。总体来说,商业人员或者其它一些雇佣和管理像数据挖掘这种技术专家的人往往本身并不是这方面的专家。因些,有时候老板们就很难去评价一个数据挖掘者的表现。这篇文章列举了一些数据挖掘表现的要点。希望,这些对于评价一个好的数据挖掘者有借鉴作用。
1、该名数据挖掘者没有或者具有很少的编程技能
大多数数据挖掘者的工作环境都要求其会抽取或者准备数据。这个过程其可以自己完成的越多,那么其依赖别人就赵少。在理想情况下—即可以直接从准备好的表格中得到需要的分析数据,一个会写代码的数据挖掘者比不会的代码同事(例如:数据转化、重新编码)可以更好、更多的从数据中得到信息。同时,当他的预测模型需要布置在生产系统的时候,一个可以提供代码的DM可以提供很好的帮助。
2、一个好的数据挖掘者可以很有效的与非数据人员进行交流
生活中并不是每个人都是统计专家,数据挖掘的结果必须让那些没有或者有少量数学背景的同事可以理解。如果别人都不理解分析结果,那么很难让他们去欣赏数据呈现的显著结果,从而也就不可能按结果去采取行动。一个可以很好的向不同“受众”(内部顾客、管理者、监管机构人员、媒体工作者)清楚表达自己的数据挖掘者比不能很好表达人对公司更有价值。一个数据挖掘者应该是很渴望收到别人的问题。
3、该数据挖掘者从来没有新方法
如果一个数据挖掘都总是用同一个办法解决各种新、老问题,那么他是不合格的。他应该,至少有时候,建议用新技术或者方法去解决问题。这并不是要求总是要用有新的方法法:毕业大多数的工作通过基础的统计即可解决。重要的是他们的运用方式。
4、该数据挖掘者无法解决自己做的东西
数据挖掘是一门细心的艺术。这里有许多统计陷阱、且概率与统计表现的重要特征可能是违反直觉的。但是,如果一个数据挖掘者无法提供说明(至少简单)他们具体做了哪些事情、且为什么这样做,并不是做的所有工作对公司都有价值。管理层想知道为什么你需要那么多的记录用于分析(毕竟是他们在为这些记录付钱),数据挖掘者应该要为他的决策提供一些客观理由支持。
5、数据挖掘人员没有把工作内容与 商业目标联系起来
一个数据挖掘者如果不能把数据与工作实际联系起来,就好像在真空中工作,那么是无法帮助他的经理(团队、公司)去评估或者利用他的工作成果。这就意味着,他是在一个技术目标还不是商业目标。如何:增加P值、准确度、AUC等这些并没有给公司带来利益(例如:客户流失率、市场份额)
6、数据挖掘从来没有提出任何挑战
一个数据挖掘人员应该有独特的视角去看公司和其所处的环境。他可以通过数据比他的同事看到更多、更全的情况,从而他也更不可能因为视角不全(或者信息不对称、或者工作阐扬)而产生偏见。因些,也不可能每次都百分之百同意其同事的提出意见。如果一个数据挖掘人员从来没有挑战你的假设(商业惯例、结论),那他是不合格。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28