
如何判定你招聘的数据挖掘人员是否称职
像任何行业一样,在数据挖掘领域人员能力差别也是非常大的。总体来说,商业人员或者其它一些雇佣和管理像数据挖掘这种技术专家的人往往本身并不是这方面的专家。因些,有时候老板们就很难去评价一个数据挖掘者的表现。这篇文章列举了一些数据挖掘表现的要点。希望,这些对于评价一个好的数据挖掘者有借鉴作用。
1、该名数据挖掘者没有或者具有很少的编程技能
大多数数据挖掘者的工作环境都要求其会抽取或者准备数据。这个过程其可以自己完成的越多,那么其依赖别人就赵少。在理想情况下—即可以直接从准备好的表格中得到需要的分析数据,一个会写代码的数据挖掘者比不会的代码同事(例如:数据转化、重新编码)可以更好、更多的从数据中得到信息。同时,当他的预测模型需要布置在生产系统的时候,一个可以提供代码的DM可以提供很好的帮助。
2、一个好的数据挖掘者可以很有效的与非数据人员进行交流
生活中并不是每个人都是统计专家,数据挖掘的结果必须让那些没有或者有少量数学背景的同事可以理解。如果别人都不理解分析结果,那么很难让他们去欣赏数据呈现的显著结果,从而也就不可能按结果去采取行动。一个可以很好的向不同“受众”(内部顾客、管理者、监管机构人员、媒体工作者)清楚表达自己的数据挖掘者比不能很好表达人对公司更有价值。一个数据挖掘者应该是很渴望收到别人的问题。
3、该数据挖掘者从来没有新方法
如果一个数据挖掘都总是用同一个办法解决各种新、老问题,那么他是不合格的。他应该,至少有时候,建议用新技术或者方法去解决问题。这并不是要求总是要用有新的方法法:毕业大多数的工作通过基础的统计即可解决。重要的是他们的运用方式。
4、该数据挖掘者无法解决自己做的东西
数据挖掘是一门细心的艺术。这里有许多统计陷阱、且概率与统计表现的重要特征可能是违反直觉的。但是,如果一个数据挖掘者无法提供说明(至少简单)他们具体做了哪些事情、且为什么这样做,并不是做的所有工作对公司都有价值。管理层想知道为什么你需要那么多的记录用于分析(毕竟是他们在为这些记录付钱),数据挖掘者应该要为他的决策提供一些客观理由支持。
5、数据挖掘人员没有把工作内容与 商业目标联系起来
一个数据挖掘者如果不能把数据与工作实际联系起来,就好像在真空中工作,那么是无法帮助他的经理(团队、公司)去评估或者利用他的工作成果。这就意味着,他是在一个技术目标还不是商业目标。如何:增加P值、准确度、AUC等这些并没有给公司带来利益(例如:客户流失率、市场份额)
6、数据挖掘从来没有提出任何挑战
一个数据挖掘人员应该有独特的视角去看公司和其所处的环境。他可以通过数据比他的同事看到更多、更全的情况,从而他也更不可能因为视角不全(或者信息不对称、或者工作阐扬)而产生偏见。因些,也不可能每次都百分之百同意其同事的提出意见。如果一个数据挖掘人员从来没有挑战你的假设(商业惯例、结论),那他是不合格。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15