
大数据告诉你:诸葛亮和司马懿谁的信用评分更高
“大数据”概念的最早出现,是从2012年2月份纽约时报一篇文章开始的。到目前为止,在大数据领域当中的投资已经越来越热,该领域企业越来越多。但是,有多少公司到底真正使用的是大数据?我相信几乎没有太多,这让我想到1999年、2000年,我刚到美国的时候目睹了所谓互联网1.0版本破灭的过程。
大数据在美国金融当中最直接的场景,主要运用于信用评估体系。美国的信用评估体系很早,对个人都有制衡作用,因此个人不敢不敢将违约的事情做得太绝。中国现在也在做,但是还不太成熟,这个领域中有很多机会。
五大因素评估信用值
美国的信用评估体系很简单,首先是债务的历史。如果个人曾经有过违约,对个人今后借款能力就会有影响。
第二是债务,当下总共欠了多少钱,这个也很重要,即使你是比尔盖茨,如果你借款已经超过了你的偿还能力,也是个问题。
第三点信用历史时间,如果你是在10年之前就有过一张信用卡,或者是相比另外一个人到今年才有第一张新的信用卡,我不能说哪个哪个之间的偿还能力更强,但至少我会知道第一个人有更多的信用数据,这个就是不一样的。
第四点是他的很多相关的其他因素都很重要。比如说最近有没有买房,如果买房就有买房信用卡的记录,有没有买车?也有。这些东西全部加起来形成了美国现有的评分体系。
对于信用数据来说,如果变量太多,从某种程度上来说,信用模型处理起来就会比较麻烦。因为它的深度比广度要重要,对于我来说,我可能关心的是你过去20年,如果你有记录,和你从最近一年当中才有记录,二者之间是不一样的。
那么同样,关注用户的历史远远多于现在,也许这个人一开始是个屌丝,最近突然发财了,可能他的偿还能力就会有巨大的改变,但是这样的因素有没有体现在这个里面?很多人不知道。怎么样把纵向和横向广度上的东西都放进来,这个就会显得相对来说比较重要一点。
传统信用评估:1.0版本信用模型
我们首先搭建一下传统信用体系中,两种类型人物的基本模型,以诸葛亮和司马懿来举例。如果将他们历史上的典故事例来模拟化举例,可以得出两个人信用情况的模型。
司马懿如果活在今天并且要借钱,可以看看今天他的信用条件怎么样:跟曹操混了那么多年,日子过得不错,拥有过许20年的信用历史,而且这个官级从养马开始一点点升上来,他可能盖房子借过钱、买马车借过钱,所以信用值也不错,最近没有新的贷款,如果从美国典型的风控角度来说,绝对可以借钱给司马懿。
如果是诸葛亮要借钱,我们先看诸葛亮的情况:他日子过得没那么好,帮刘备把蜀国给搞下了,但是毕竟蜀国财政没那么好。收入可能只有3000块钱,过去24个月还违约过一次,只有7年的信用历史,最近还老是借钱,借过3次,贷款类型也不丰富,借过钱买过马车。
将这二者之间进行比较,毫无疑问大家都会选择把钱借给司马懿,而不借给诸葛亮,这是个典型的传统的风控模型,看重债务历史,而不看重现在。
真正的信用评估应该是这样的:传统的占很大一部分,但是可替代的网络数据也占据一部分,包括用户在网上体现出来的网络行为、社交信息和来自用户自己的回答,要把所有这些信息全部给综合起来才可以。在传统数据当中,我们只看到了深度没看到广度,现在更多是注重广度,因此当下网络上的数据也是很重要的。
大数据:2.0版本信用评估模型
以上是信用评估的1.0版本,倘若以互联网的思维和方式来分析,或许就能获得截然不同的结果。所以在2.0版本当中,司马懿和诸葛亮的介绍可能是这个样子:
首先,司马懿的上网IP地址来自于魏国国家图书馆、蔡文姬茶楼等,他不从工作的地方来、也不从家里来,可以证明他没有稳定的收入。而他刚刚申请了两个发薪日贷款,这证明他以前有钱,现在没钱。而他的学生贷款是从公司里扣除的,说明他钱不归他控制,而由魏国国家政府控制着意味着信用记录并不好。而从地址来看,他最近一会在许昌,一会在洛阳,一会在长安频繁搬家,从整体情况来分析,很可能最近他混得比较惨。
而诸葛亮借钱的原因是他去年被马车撞了,蜀国的医疗保障不健全,他只好自己付了医疗费,这意味着40%的DIT来自于他借款还医疗费,而之所以历史信用记录不长,是因为他刚刚搬到四川,当丞相的时间不长,信用体系仍然没有建立完全,但最近五年他一直住在丞相府,地址相对稳定,而且在学生时代曾从司马徽,庞德公那里拿过奖学金。如果把所有的因素放在一起,信用评估的结果就会发生变化。
在大数据的场景当中,如果有一个合适的建模的方式,能够产生一个二维决策,那么就可以看到,最终借款的人应该是借给诸葛亮,而不应该是借给司马懿。
大数据信用模型的关键点
大数据模型理念,一切数据皆为信用数据,以此“积少成多、汇流成海”。在此之前做统计、做因果系统的时候,总是希望能找到原因判断这些事情到底是不是靠谱。但是在大数据的情况之下,我们认为可以暂时不考虑背后的原因,并不是不知道原因就等同于它不靠谱。我们只看关联不看因果。
大数据的关键点之二是数据的来源。包括错误信息也是有用信息,比如说谎能体现出一个人素质。
第三点就是所谓的建模,总而言之,大数据当中对所谓特征的变化,特征的提取和最后所谓独立模型细节的建立,最后模型的整合都跟以前传统统计上的理论有很大的区别。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08