
几个数据挖掘中常用的概念
还有一些概念是我们在数据挖掘中常用的,比如聚类算法、时间序列算法、估计和预测以及关联算法等。我们将在本节中介绍几个常用概念以加深读者对数据挖掘的理解。
聚类
所谓聚类,就是类或簇(Cluster)的聚合,而类是一个数据对象的集合。
和分类一样,聚类的目的也是把所有的对象分成不同的群组,但和分类算法的最大不同在于采用聚类算法划分之前并不知道要把数据分成几组,也不知道依赖哪些变量来划分。
聚类有时也称分段,是指将具有相同特征的人归结为一组,将特征平均,以形成一个"特征矢量"或"矢心"。聚类系统通常能够把相似的对象通过静态分类的方法分成不同的组别或者更多的子集(Subset),这样在同一个子集中的成员对象都有相似的一些属性。聚类被一些提供商用来直接提供不同访客群组或者客户群组特征的报告。聚类算法是数据挖掘的核心技术之一,而除了本身的算法应用之外,聚类分析也可以作为数据挖掘算法中其他分析算法的一个预处理步骤。
图2-7是聚类算法的一种展示。图中的Cluster1和Cluster2分别代表聚类算法计算出的两类样本。打"+"号的是Cluster1,而打"○"标记的是Cluster2。
在商业中,聚类可以帮助市场分析人员从消费者数据库中区分出不同的消费群体,并且概括出每一类消费者的消费模式或者消费习惯。它作为数据挖掘中的一个模块,可以作为一个单独的工具以发现数据库中分布的一些深层次的信息,或者把注意力放在某一个特定的类上以作进一步的分析并概括出每一类数据的特点。
聚类分析的算法可以分为划分法(Partitioning Methods)、层次法(Hierarchical Methods)、基于密度的方法(Density-Based Methods)、基于网格的方法(Grid-Based Methods)和基于模型的方法(Model-Based Methods)等。
比如,下面几个场景比较适合应用聚类算法,同时又有相应的商业应用:
哪些特定症状的聚集可能预示什么特定的疾病?
租同一类型车的是哪一类客户?
网络游戏上增加什么功能可以吸引哪些人来?
哪些客户是我们想要长期保留的客户?
聚类算法除了本身的应用之外还可以作为其他数据挖掘方法的补充,比如聚类算法可以用在数据挖掘的第一步,因为不同聚类中的个体相似度可能差别比较大。例如,哪一种类的促销对客户响应最好?对于这一类问题,首先对整个客户做聚集,将客户分组在各自的聚集里,然后对每个不同的聚集,再通过其他数据挖掘算法来分析,效果会更好。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29