京公网安备 11010802034615号
经营许可证编号:京B2-20210330
几个数据挖掘中常用的概念
还有一些概念是我们在数据挖掘中常用的,比如聚类算法、时间序列算法、估计和预测以及关联算法等。我们将在本节中介绍几个常用概念以加深读者对数据挖掘的理解。
聚类
所谓聚类,就是类或簇(Cluster)的聚合,而类是一个数据对象的集合。
和分类一样,聚类的目的也是把所有的对象分成不同的群组,但和分类算法的最大不同在于采用聚类算法划分之前并不知道要把数据分成几组,也不知道依赖哪些变量来划分。
聚类有时也称分段,是指将具有相同特征的人归结为一组,将特征平均,以形成一个"特征矢量"或"矢心"。聚类系统通常能够把相似的对象通过静态分类的方法分成不同的组别或者更多的子集(Subset),这样在同一个子集中的成员对象都有相似的一些属性。聚类被一些提供商用来直接提供不同访客群组或者客户群组特征的报告。聚类算法是数据挖掘的核心技术之一,而除了本身的算法应用之外,聚类分析也可以作为数据挖掘算法中其他分析算法的一个预处理步骤。
图2-7是聚类算法的一种展示。图中的Cluster1和Cluster2分别代表聚类算法计算出的两类样本。打"+"号的是Cluster1,而打"○"标记的是Cluster2。
在商业中,聚类可以帮助市场分析人员从消费者数据库中区分出不同的消费群体,并且概括出每一类消费者的消费模式或者消费习惯。它作为数据挖掘中的一个模块,可以作为一个单独的工具以发现数据库中分布的一些深层次的信息,或者把注意力放在某一个特定的类上以作进一步的分析并概括出每一类数据的特点。

聚类分析的算法可以分为划分法(Partitioning Methods)、层次法(Hierarchical Methods)、基于密度的方法(Density-Based Methods)、基于网格的方法(Grid-Based Methods)和基于模型的方法(Model-Based Methods)等。
比如,下面几个场景比较适合应用聚类算法,同时又有相应的商业应用:
哪些特定症状的聚集可能预示什么特定的疾病?
租同一类型车的是哪一类客户?
网络游戏上增加什么功能可以吸引哪些人来?
哪些客户是我们想要长期保留的客户?
聚类算法除了本身的应用之外还可以作为其他数据挖掘方法的补充,比如聚类算法可以用在数据挖掘的第一步,因为不同聚类中的个体相似度可能差别比较大。例如,哪一种类的促销对客户响应最好?对于这一类问题,首先对整个客户做聚集,将客户分组在各自的聚集里,然后对每个不同的聚集,再通过其他数据挖掘算法来分析,效果会更好。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22