
为什么数据分析不能代替思考
在设计工作中,越来越多的场景是,我们根据用户使用产品产生的数据来直接判断我们的设计。甚至有时候,产品经理和设计师并没有完全了解数据的真实含义,就直接根据数据来修改我们的产品设计。这是非常危险的。本文简洁明了地阐述了数据不能代替思考这个道理。yoyo读完深有同感,并记录一些真实工作例子来思考这个论点。很喜欢本文中的一句话:当我们要求更多数据进行分析之前,我们需要先了解自己。
作者开篇引用了一些关于大数据的观点,例如,传说中的大数据,让科学过时。大数据让很多学科没有存在的意义,例如,遗传学,语言学,社会学。Wired的编辑Anderson说:“当数据充足的时候,数字就可以代表一切,自我论证,得出结论。”
作者也引用了去年一位CEO的观点:“我相信数学已经胜过科学。你已经不需要去了解为什么,你只需要知道A,B两个事件发生后,C会发生。”
作者认为以上的观点在某种程度上是真实的。科学的分析方法可以帮助我们观察,假设,测试,与分析,而足够的数据以及强大的电脑分析能力让以上步骤简单而成本低,效率更高。例如,A/B tests,像Google与Amazon这样的大公司可以提供给不同用户群体不同的页面布局,来测试哪种布局得到的效果更好,然后选择效果好的版本来作为最终版本。这个方法已经在很多公司普遍流行。
但是,这样的方法一定是有效的么?作者认为,这样并不能说明这个测试过程是完全科学且没有任何假设的。我们人类最擅长在事实发生后编一个故事。而在以上场景中,我们只是把编故事的时间挪到了事实发生之前。
在大数据时代,我们的假设以及说故事的能力,是与数据分析息息相关的。
所以,作者引出另一种观点:
数字不可以代表一切,自我论证,得出结论;数字是我们讲故事的依据。数据驱动的预测方式可能成功,也可能失败。当我们要求更多数据进行分析之前,我们需要先了解自己。
作者最后总结,我们对事物的发展总是有自己的主观意见。我们应该合理使用数据来修正我们的思考,但是这个模式成功的前提是,我们必须在分析数据前要先思考。
-------------- 数据不能代替思考是无比真实的分割线 --------------
简短的文章描述的论点很鲜明,我这里理解到有用的点是:数据分析是一个很强大的工具,也是未来的趋势,但是在数据分析的整个过程中,包括前,中,后,人类的思考才是核心。脱离了思考的数据分析,带来的是不可预测的结果。数据分析不能代替思考这个过程。
先讲一个例子,非常吻合本文的论点。以下是我4年多前在雅虎移动搜索做的“直接搜索”,流程是,用户在手机上搜索“Weather”,手机自行判断本机位置,然后展示当地的天气。下面例子是在旧金山搜索“Weather”得到的页面的顶部,这个区块往下就是正常的10个blue links。
当时雅虎移动搜索类似这样的“直接搜索”有30多个,包括本地商务,天气,星座,明星,音乐,购物等等。有一天,产品经理拿着这30多个“直接搜索”的数据来找我,说:
“yoyo,你看,天气的直接搜索,点击率是最低的,只有不到1%,我们是不是应该删除这个直接搜索,这个直接搜索没用。”
我第一时间心理反应是:“什么?这个直接搜索应该是非常有用的,业界研究表明用户对天气搜索的需求是手机搜索的前几类,也符合我自己对这个产品设计的认知,数据怎么这么低?”
“不能完全依赖这个数据来决定”,我告诉自己,然后想了一下,了解了为什么数据会偏低,然后告诉产品经理:
“数据低就对了!我们做“直接搜索”的价值,就是希望提供给用户10个blue links之外,给用户提供直接展示的答案,减少用户点击links到下一页的场景。这个天气搜索的场景,用户搜索天气,看到了答案,52度,他们不需要再往下走了,一部分用户希望了解后七天的天气,才会点击进入看完整天气预报,但是大部分用户看到答案就会满足,完成任务,数据低反而证明了我们产品设计是成功的。”
产品经理想了想,认同了,我们又聊了一会儿,共识是,如果每个产品设计决策都是纯粹依照数据而不思考,得有多少奇怪,错误的决策发生啊!
思考还能带来选择完整数据的好处。例如做电商网站,搜索“电视机”,得到的搜索页面。页面布局可以生成一张热图,来展示用户点击各个区块的点击率。如果不思考,纯粹以点击率多少来修改页面布局,结果一定是最好的么?当然不是。电商需要的是用户进行购买,产生商业价值。而商业价值相关的应该是购买转化率。所以思考后,发现电商网站的布局不能光看点击率,还要加入购买转化率一起思考。
数据分析中,选择数据是关键,不经过思考地选择数据,会出现两种不好的情况,一种是选择不足,得出结果不准确,一种是选择过多,无法得出单一结果。
当然,提倡思考不代表让我们固执。我们有时在数据分析会犯一个错误,就是主观地想好了一个论点,然后自己去挑选数据来论证自己。这个也是数据分析的经典错误。如本文所说,数据分析是辅助我们思考的有效方法,而不是不择手段证明自己观点的工具。
诚然,用户使用产品产生的数据是我们设计师最宝贵的第一手资料。但是如何使用这些数据,如何分析数据来增益产品设计,是一个很严谨的过程。我们在主动思考与客观分析数据的过程中,不能犯一丝错误,才能得到最佳结果。古人云“失之毫厘,谬以千里”,大致是这个意思。:)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22