
为什么数据分析不能代替思考
在设计工作中,越来越多的场景是,我们根据用户使用产品产生的数据来直接判断我们的设计。甚至有时候,产品经理和设计师并没有完全了解数据的真实含义,就直接根据数据来修改我们的产品设计。这是非常危险的。本文简洁明了地阐述了数据不能代替思考这个道理。yoyo读完深有同感,并记录一些真实工作例子来思考这个论点。很喜欢本文中的一句话:当我们要求更多数据进行分析之前,我们需要先了解自己。
作者开篇引用了一些关于大数据的观点,例如,传说中的大数据,让科学过时。大数据让很多学科没有存在的意义,例如,遗传学,语言学,社会学。Wired的编辑Anderson说:“当数据充足的时候,数字就可以代表一切,自我论证,得出结论。”
作者也引用了去年一位CEO的观点:“我相信数学已经胜过科学。你已经不需要去了解为什么,你只需要知道A,B两个事件发生后,C会发生。”
作者认为以上的观点在某种程度上是真实的。科学的分析方法可以帮助我们观察,假设,测试,与分析,而足够的数据以及强大的电脑分析能力让以上步骤简单而成本低,效率更高。例如,A/B tests,像Google与Amazon这样的大公司可以提供给不同用户群体不同的页面布局,来测试哪种布局得到的效果更好,然后选择效果好的版本来作为最终版本。这个方法已经在很多公司普遍流行。
但是,这样的方法一定是有效的么?作者认为,这样并不能说明这个测试过程是完全科学且没有任何假设的。我们人类最擅长在事实发生后编一个故事。而在以上场景中,我们只是把编故事的时间挪到了事实发生之前。
在大数据时代,我们的假设以及说故事的能力,是与数据分析息息相关的。
所以,作者引出另一种观点:
数字不可以代表一切,自我论证,得出结论;数字是我们讲故事的依据。数据驱动的预测方式可能成功,也可能失败。当我们要求更多数据进行分析之前,我们需要先了解自己。
作者最后总结,我们对事物的发展总是有自己的主观意见。我们应该合理使用数据来修正我们的思考,但是这个模式成功的前提是,我们必须在分析数据前要先思考。
-------------- 数据不能代替思考是无比真实的分割线 --------------
简短的文章描述的论点很鲜明,我这里理解到有用的点是:数据分析是一个很强大的工具,也是未来的趋势,但是在数据分析的整个过程中,包括前,中,后,人类的思考才是核心。脱离了思考的数据分析,带来的是不可预测的结果。数据分析不能代替思考这个过程。
先讲一个例子,非常吻合本文的论点。以下是我4年多前在雅虎移动搜索做的“直接搜索”,流程是,用户在手机上搜索“Weather”,手机自行判断本机位置,然后展示当地的天气。下面例子是在旧金山搜索“Weather”得到的页面的顶部,这个区块往下就是正常的10个blue links。
当时雅虎移动搜索类似这样的“直接搜索”有30多个,包括本地商务,天气,星座,明星,音乐,购物等等。有一天,产品经理拿着这30多个“直接搜索”的数据来找我,说:
“yoyo,你看,天气的直接搜索,点击率是最低的,只有不到1%,我们是不是应该删除这个直接搜索,这个直接搜索没用。”
我第一时间心理反应是:“什么?这个直接搜索应该是非常有用的,业界研究表明用户对天气搜索的需求是手机搜索的前几类,也符合我自己对这个产品设计的认知,数据怎么这么低?”
“不能完全依赖这个数据来决定”,我告诉自己,然后想了一下,了解了为什么数据会偏低,然后告诉产品经理:
“数据低就对了!我们做“直接搜索”的价值,就是希望提供给用户10个blue links之外,给用户提供直接展示的答案,减少用户点击links到下一页的场景。这个天气搜索的场景,用户搜索天气,看到了答案,52度,他们不需要再往下走了,一部分用户希望了解后七天的天气,才会点击进入看完整天气预报,但是大部分用户看到答案就会满足,完成任务,数据低反而证明了我们产品设计是成功的。”
产品经理想了想,认同了,我们又聊了一会儿,共识是,如果每个产品设计决策都是纯粹依照数据而不思考,得有多少奇怪,错误的决策发生啊!
思考还能带来选择完整数据的好处。例如做电商网站,搜索“电视机”,得到的搜索页面。页面布局可以生成一张热图,来展示用户点击各个区块的点击率。如果不思考,纯粹以点击率多少来修改页面布局,结果一定是最好的么?当然不是。电商需要的是用户进行购买,产生商业价值。而商业价值相关的应该是购买转化率。所以思考后,发现电商网站的布局不能光看点击率,还要加入购买转化率一起思考。
数据分析中,选择数据是关键,不经过思考地选择数据,会出现两种不好的情况,一种是选择不足,得出结果不准确,一种是选择过多,无法得出单一结果。
当然,提倡思考不代表让我们固执。我们有时在数据分析会犯一个错误,就是主观地想好了一个论点,然后自己去挑选数据来论证自己。这个也是数据分析的经典错误。如本文所说,数据分析是辅助我们思考的有效方法,而不是不择手段证明自己观点的工具。
诚然,用户使用产品产生的数据是我们设计师最宝贵的第一手资料。但是如何使用这些数据,如何分析数据来增益产品设计,是一个很严谨的过程。我们在主动思考与客观分析数据的过程中,不能犯一丝错误,才能得到最佳结果。古人云“失之毫厘,谬以千里”,大致是这个意思。:)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08