
数据可视化6大技巧
越来越多的媒体开始接受网络数据,数据可视化便成为不可或缺的一部分。用一个个有效且有逻辑关联性的图形来显示数据、传递信息,能够让人们更加了解事物的本质。虽然现在已经有很多关于数据可视化的教程,但有关数据可视化的学术研究仍然较少。新闻记者更倾向于关注Edward Tufte等人的流行书籍,忽视了学术研究本身。事实上,关于数据可视化的学术文献才是记者新闻工作过程中的探照灯。
关于数据可视化,我们能从学术研究中学到这6点:
1、结合图标来增加说服力
康奈尔大学的研究人员发现,仅在文章中增加一张图表,就能使文章的说服力大大增强。对于同一篇文章,高达97%的参与者更认同那个含有图表的文章所传达的信息。就像某些科学性较强的新闻,它的内容相对来说枯燥且专业性过强,普通的读者一般很难了解新闻想要传达的信息,这时如果记者把数据进行可视化,清晰的数据图表将对读者产生更大的影响。
2、使用饼图、条形图或泡泡,使数据显示得更加清晰
威廉·克利夫兰(William Cleveland)和罗伯特·麦吉尔(Robert McGill)是第一个用科学的结论支持常识性说法并批判现有图表的研究者。1984年,克利夫兰和麦吉尔指导人们根据图表的类型,准确地“解码”各种视觉属性的数据。比 如一个圆的面积、酒吧的体积等等。他们研究所得到的制作图形编码的结论是这样的:
3、超大图表≠最优图表
研究发现,图表的尺寸将在一定程度上影响信息的传播效果。图表越短,读者的关注度越少。然而实际上,随着图表精确度的增加,信息的传播效率得到了更快地提升。研究表明,在页面布局方面,设计师必须考虑制作一个合理大小的图表,这样才能让信息传播的准确性及效率最大化。大图表可能会给读者带来更多的视觉冲击,实则在提高读者信息理解度方面收效甚微。
4、视觉打败记忆:请按空间顺序排列,而非时间
塔玛拉·芒泽(Tamara Munzer)是哥伦比亚大学的计算机科学教授,她建议设计师制作一些让读者更容易理解的可视图。这就意味着要把现有数据按照空间顺序进行比较,而非按时间顺序。用她的话说就是“视觉打败记忆”,因为我们的大脑更倾向于对两个项目进行比较,而非记住一个接一个的动画或视频。她不是首推按空间排列顺序的第一人,但芒泽认为这是一个对数据可视化的好建议。具体而言就是,要对比各项数据,懂得揭示其中的变化和差异,而非简简单单地呈现一个动画。
5、有创意,才难忘!
哈佛大学和麻省理工学院的一只团队正在研究各种形式的大数据可视化。他们试图使可视图更加令人难忘,而非提高图表的有效性和准确性。在收集、分类,并研究了5000多个可视图后,他们认为那些图案多样、颜色鲜艳、视觉密度更高、含有易辨认人物头像的可视图更容易被读者记住。
他们还发现,非传统的图表更令人难忘。同时,这个团队也承认,他们的研究只考虑了可视图的呈现,而忽略了对实际数据的诠释。尽管存在这些限制,但他们的研究也具体、明显地表明,要设计一个能产生持续影响力的可视图,新颖的创意、绚丽的色彩和丰富的图案演示是不可或缺的三要素。
6、真的需要夸大你的图表和插图吗?
最先倡导数据可视化的专家塔夫特提出了一个极具争议性的观点,即太多的图案使可视图的阅读性大大降低。来自加拿大的研究人员质疑这个想法,并且把过多美化的图表和简约的图表做了对比。他们认为,“华丽”的图表实际上并没有降低数据的可读性与准确性。此外,这项研究的参与者发现,人们两个星期后甚至会重新阅读“华丽”的图表。
所以,可视图到底应不应该装饰插图?极简主义者认为,演示图表可以让人们重新思考当下,并批判以往的研究方法。如今,对于修饰与未修饰图表所形成的效果,各种观点仍旧没有达成明确的共识,它留下的艺术价值远甚于科学价值。
关于数据可视化的实践跨越了科学与艺术两个领域。然而,从学术结论转移到实际操作并非易事。最近,《纽约时报》可视图编辑者迈克·博斯托克(Mike Bostock)警告Reddit论坛道:“学术界的危险在于它很容易使一切变得过于抽象。”把抽象转为具体,是一项很值得去做的事情。学术界可以提供一些制作可视图的指导,同时,编辑部也应该时刻留意着象牙塔。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15