
spss常用操作精华
标签
SPSS中的数据文件,除了data view以外,还有variable view,打开后如图。
Name:变量名称;Type:数据类型;Lable:变量标签;Values:变量数值标签。
使用用变量标签和数值标签,可以使我们在统计的时候更直观的知道变量和值所代表的含义。
在SPSS中,可以直接点击Lable列的单元格,输入标签。
另外,还可以通过菜单:Data – Define Variable Properties,或者通过命令来定义。
SPSS数据计算(Compute)
使用Compute命令,可以生成新的变量。
菜单:Transform – Compute Variable
在Target Variable里面输入通过计算生成的新变量的名称;在Numeric Expression里输入值或者表达式;在这个对话框下面有一个If按钮,点击它,输入相关条件,可以只对符合条件的样本进行计算。
SPSS数据重新编码(Recode)
数据重新编码可以把一个变量的数值按照要求,赋予新的值;也可以把连续性的变量(比如年龄)重新编码成区间型变量(如年龄段)。
菜单:Transform – Recode Into Same Variables(把变量的数值直接重新编码)
Transform – Recode Into Different Variables(编码到新的变量中)
选择要编码的变量后,点击按钮:Old and New Values,在Old Value处输入老的编码,在New Value处输入新的值,点击Add。全部添加完毕以后,点Continue。
SPSS的命令(Syntax)
SPSS的操作,也可以只通过命令来进行。
菜单:File – New - Syntax
打开Syntax窗口,输入命令。命令可以保存为.sps文件。
大部分的操作可以通过Paste转变为命令,然后在Syntax窗口用菜单Run来运行。
Syntax的基本语法是:
不区分大小写,每个语句以“.”结束。
关于每个命令的语法,可以查看:Help--Command Syntax Reference
只统计某部分样本
做统计的时候,有时后只想统计部分样本,比如:只看18岁以下的样本在某道题的频次情况。这时可以用SPSS的Select Cases功能。
菜单: Data – Select Cases – If condition is satisfied ,点击下面的If…
在右侧的条件框里输入对应的条件,主要的逻辑关系有:=,~=,>,<,&(且),|(或)
等,然后点击Continue。回到上一个画面,点击OK。这样在统计的时候就只统计您刚才选择的那部分样本了。
注:
关闭数据文件后重新打开,如果要做部分样本统计,需要重复上述过程。
在做完部分样本的统计后,如果要做全部样本的统计,Data – Select Cases – All Cases
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07