京公网安备 11010802034615号
经营许可证编号:京B2-20210330
你准备好成为一名数据分析师了吗?
随时大数据的大热,或者在大数据的影响下,很多企业开始真正重视数据,真正期望从数据中挖掘价值。甚至很多企业已经把数据作为取得竞争优势的战略。而数据真正价值的实现,不管计算效率,存储等发展的多快。一定需要“分析师”,可以说是数据分析师既是建造“数据大厦”的总体设计师,也是建造“数据大厦”的工人。
数据分析师最为稀缺的人才,相信未来10年内一定是最为朝阳行业之一。所以现在很多朋友希望转型做数据分析师,很多毕业的同学也准备从事数据分析师。但很多都不知道成为一名分析师真正需要什么?
前段时间,应中国统计网的邀请,去给杭州师范给统计学的同学做了一个分享,关于数据分析师职业。借这个机会也总结一下,送给准备从事数据分析师工作的朋友。
如前面所说,分析师既是总设计师,也是工人。所以要跨入数据分析师,也许很多时候你只能从“工人”开始做成(这意味着在很大长一段时间内,你的工作内容可能比较枯燥,可能做的都是比较没有“技术”含量的活),慢慢的当你成为“熟练工”同时随着行业相关知识和各种技能的积累,慢慢你也会走上“数据设计师”之路。开始从事“高大上”或者更有技术含量的工作。
个人觉得觉得需要三步曲:
1
至少花三个月掌握技术
“磨刀不误砍柴工”,要想从为“工人”,甚至熟悉工,也需要很多技能,因为怎么说数据分析师也是技术工种 。我觉得至少你要花3个月时间来学习一些最基础的知识。
花1个月学习数据库知识。
花1-2个月学习基础的统计学知识。
花1个月学习点linux的知识。
花1个月去学习最基础的数据挖掘模型:
花1个月掌握一门基础的挖掘软件的操作。
分析师一定要有持续学习的态度,所以在后续 工作中一定要保持持续学习的态度哦。坚持学习各类知识,不仅仅是技能层面的。
2
选择感兴趣的行业
如果你已经工作,选择本行业或者相关行来。这样你在行业经验,业务知识你是有优势的。因为你比较清楚业务的“痛点”
从而你也就相对清楚应该给业务提供什么样的数据。
如果你是学生,分析师一下自己的兴趣,结合现在比较热门的行业(指数据在这个行业也是比较热)。
通过互联网学习,聊这个行业的商业模式,数据内容,分析点。有机会可以去参加一些同行的沙龙或者分享,清楚的了解这个行业的数据分析师或者同行平时都在干什么 。
对比自己当面的知识储备,更有针对性的补充知识。和在学校的同学共勉一句话:“在学校学的东西都是有用的,只是学校没有告诉你怎么用!”
3
开始寻找机会
对于跨行业转入的同学,当你准备好上述内容的时候。开始找个机会:
内部转岗
选择中、小型公司。先入门,再修行。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31