
Excel 绘图区分区设置不同背景色之柱形图
在Excel图表中,如对绘图区设置背景色,一般只能对整个绘图区设置同一种颜色、图案或图片为背景。但有时希望能对不同的分区设置不同的颜色作为背景,这时可以采取其他辅助手段实现这一目标,包括添加辅助的柱形图堆、积柱形图、堆积条形图,面积图等等。这些方法的基本思路是一样的,略举几例,可以自己试验创造。本篇介绍使用柱形图,进行横向或纵向分区设置绘图区背景色。
如有下表:
表-1
做成折线图,调整坐标轴刻度后,如下所示:
图-1
用辅助柱形图纵向设置分区背景色:
先准备按年,对绘图区设置颜色,由上图得知本例Y轴最大刻度为23,在原数据表格中添加一辅助系列数据,如下图所示:
表-2
选中图表,在右键菜单中选“选择数据”(或在Excel界面上“图表工具”-“设计”-“数据”-“选择数据”),在“图例项(系列)”中点击“添加”,准备将上述辅助数据行作为一个系列添加到图表中:
图-2
将AT107:AW107添加为系列2,水平(分类)轴标签选为AT105:AW105,如下图所示:
图-3
确定后,系列2也呈折线图,如下图所示:
图-4
在图表中选中系列2,在右键菜单上选“更改系列图表类型”,将系列2图表类型改变为柱形图:
图-5
选中系列2的柱形,在“设置数据点格式”-“系列选项”中将“分类间距”滑动游标拖至为0,即无间距,如下图所示:
图-6
逐个选中系列2的各个数据点,单独设置各个柱形的填充颜色,适当增加透明,如下图所示:
图-7
上述方法是增加一行辅助系列数据,设置其为柱形图,并使其分类之间间距为0。换言之,即以柱形的填充代之以背景色。这是一种替代方式,并非可以随意自定义设置绘图区背景色。这种方式的优点是设置比较方便,可以较快捷地达到分区的目的,其缺点是只能纵向分割,且颜色比较单调。
以辅助堆积柱形图横向分区设置绘图区背景色
在上面的柱形图方法中,各个分区是纵向设置颜色替代,如要横向分区可以使用堆积柱形图方式。
在上例表中,考虑到最大刻度是23,准备使用堆积柱形图,于是设计一列系列数据,使其堆积总和为23。如欲横向整齐地划分,可同样设置其他几列,如下图所示:
图-8
选中图表,在右键菜单中选“选择数据”(或在Excel界面上“图表工具”-“设计”-“数据”-“选择数据”),在“图例项(系列)”中点击“添加”,将上述辅助数据列AT108:AT111作为系列2添加到图表中,同样将辅助数据列AU108:AU111作为系列3、AV108:AV111作为系列4、AW108:AW111作为系列5,一个一个逐个添加进去(整个区域不能同时一起加入):
图-9
如上图所示,系列2-系列5的水平(分类)轴标签也选为AT105:AW105,确定后,将Y轴刻度调整为0-23,如下图所示:
图-10
逐个选中后添加的系列数据,在右键菜单上选“更改系列图表类型”,将其图表类型改变为堆积柱形图,如下图所示:
图-11
选中柱形,在“设置数据点格式”-“系列选项”中将“分类间距”滑动游标拖至为0,即无间距,如下图所示:
图-12
逐个选中堆积柱形的各个数据点,单独设置各个柱形的填充颜色,并删除图例和堆积柱形图的数据标志,为改善图形位置视觉效果,适当增加透明,再将Y轴刻度设置为15-23,如下图所示:
图-13
也可以随意选中各个数据点,调整颜色,使之横向与纵向区分都较为明显,如下图所示:
图-14
上述方法是增加一系列辅助数据,设置其为堆积柱形图,并使其分类之间间距为0,设置不同颜色,使之达到分割各个分区的目的。如适当调整后添加的辅助数据数值,其分割形式会更丰富。换言之,本例是以堆积柱形的填充代之以背景色,好处在于设置颜色的种类与区域比较多,既可以体现横向分区,也可以体现纵向分区,比较自由灵活多变。不过要说清:这只是一种替代方式,并非可以随意自定义设置绘图区背景色。
你是否渴望进一步提升数据可视化的能力,让数据展示更加专业、高效呢?现在,有一门绝佳的课程能满足你的需求 ——Python 数据可视化 18 讲(PyEcharts、Matplotlib、Seaborn)。
学习入口:https://edu.cda.cn/goods/show/3842?targetId=6751&preview=0
这门课程完全免费,且学习有效期长期有效。由 CDA 数据分析研究院的张彦存老师精心打造,他拥有丰富的实战经验,能将复杂知识通俗易懂地传授给你。课程深入讲解 matplotlib、seaborn、pyecharts 三大主流 Python 可视化工具,带你从基础绘图到高级定制,还涵盖多元图表类型和各类展示场景。无论是数据分析新手想要入门,还是有基础的从业者希望提升技能,亦或是对数据可视化感兴趣的爱好者,都能从这门课程中收获满满。点击课程链接,开启你的数据可视化进阶之旅,让数据可视化成为你职场晋升和探索数据世界的有力武器!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03