
数据分析常用的几个方法
数据分析是产品经理必备技能之一,在产品需求阶段可以通过数据分析对用户的需求去伪存真,在产品上线运营阶段,又可以通过数据验证产品的可行性并且进行迭代。所以产品经理要掌握常见的数据分析的方法。
1.多维度事件分析
多维度事件分析:通常是从多个角度分析数据,从中发现数据具体的变化原因。
举个例子:
客户端+时间
从数据中可以看出:IOS用户端每个月的用户量在增加,而安卓用户端每个月的用户量在减少,从这可以看出总的用户量不变的主要原因是安卓用户端用户量在减少。
2.漏斗分析法
用来分析从潜在用户到最终用户这个过程用户数量的变化趋势,从而寻找到最佳的优化空间。
这个例子是分析从用户提交成功表单到Demo试用的变化趋势。
从用户成功提交表单到Demo上所有事件转化率是4.89%,从Demo上所有事件到提交申请接入数据转化率是0.56%。从表的下面可以看出,用户使用邮件办理的转化率分别是8.12%和0.76%。用户使用电话办理的转化率分别是0.93%和0.31%。从中可以看出电话办理的转化率低于平均转化率,从而要考虑如何去优化和改善电话这方面的流程。当然真实的用户行为往往可能不是按照这个简单的流程来的。所以我们也要去分析为什么用户要经过那么复杂的流程来达到目的,思考着中间有没有优化的可能。
3.留存分析法
留存是产品增长的核心,只有用户留下来产品才有可能得到增长。从产品设计角度出发,找到出发流程的关键行为,帮助用户找到产品的留存的关键节点。比方用户在使用过产品的新建功能留存度非常高,所以我们把新建这个按钮放在很显眼的地方刺激用户使用,结果留存度非常高。
留存关系到产品的生死,有时候产品花费大量的人力物力而导入的流量,留存率太低,用户还没有产生价值就离开。这对于公司是比较大的损失。所以想办法找到产品留存的关键节点把用户留下来是十分重要的。
4.群组分析法
产品经理对用户的精细的分析必不可少,不同的区域,不同的来源,不同的平台用户对产品的使用和感知是有很大的不同。所以产品经理可以对不同属性的用户进行分群,从而观察到群组用户的行为差异,进而优化产品。
之前我们做过一次分析,网站的总体用户注册转化率只有6%。用户用360浏览器的转化率为12%,用IE浏览器的转化率为1%,这样一分就很明显了,可以重点去关注IE浏览器用户的行为路径去查找到底是什么原因。
最后介绍个常用的数据分析模型
AARRR模型
AARRR模型是可以告诉我们产品的几个阶段分别需要注意哪些数据,AARRR分别是几个英文的字母首写,分别代表:获取,激活,留存,收入,推荐。
获取:(指产品推广,用户是从哪里来的)需要关注的数据是:曝光度,打开率,点击率,下载量,用户获取成本。
激活:(指用户使用产品)需要关注的数据是:新用户注册量,日活跃,订阅数,浏览数。
留存:(指用户使用产品的时限)需要关注数据是:次日留存(DAU),7日留存率(WAU),距离上次使用时长。
收入:(指产品获得的利润)需要关注的数据是:付款率,客单价,付费频率,用户价值。
推荐:(指用户推荐其他人使用我们产品)需要关注数据是:转发数,邀请书,评论数。
总结
以上所讲的都是一些简单常用的数据分析方法,产品经理要最起码要懂得如何去进行数据分析,这样才能根据数据的反馈进行产品的优化。不停奔跑,不停思考,我就是我,进阶的PM丁小二。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10