
用大数据创新护理职业教育
科学发现、技术创造推动生产力进步,现代化大生产促进生产力加速发展,计算机的出现是大数据生成的基础,全球网络的形成使得大数据从可能变为现实。大数据是生产力发展进步的必然结果。贵阳市提出发展大数据产业,这是立足长远、抢占科技发展制高点的战略举措。贵阳搞大数据的基础,在于省市委、政府强烈的发展愿望和开拓创新精神,在于得天独厚的自然环境和良好的干事创业环境。2014年2月,大数据产业被贵州定为省级发展战略,这一年全省大数据信息产业实现规模总量1460亿元,同比增长62.2%,成绩斐然。2015年5月25日,“2015贵阳国际大数据产业博览会暨全球大数据时代贵阳峰会”隆重开幕,贵阳市率先打造、引领全省大数据产业,极大地推动和促进经济社会的发展,为贵州实现“两化”深度融合,带动全省产业转型,推进跨越赶超打下良好基础。大数据产业的发展,也为护理职业教育的改革和打造发展升级版创造了条件。
大数据时代的到来必然带动传统教育模式的变革,个性化学习和终身教育成为完善教育的核心内容。大数据依赖海量信息,通过网络打造了科学研究、技术创新的平台。大数据提供的及时、前沿的理论成果和数据资源,为提高教和学的效率创造条件,完成了传统教育模式难以承担的教学任务;优质的视频教学可以防止老师因循守旧、信口开河造成的误导;随时随地地网上学习相对于定时定点的课堂教学更为灵活。在大数据时代,以教师为中心传授知识和技能的模式正转向适应学生自主学习的方式,老师的职责更多转向心理辅导、讨论指导、资源提供、课题设计、学习激励、活动组织,对老师的评价也相应地转向在这些方面的能力和水平。
在市委、市政府的正确领导下,贵阳护理职业学院自组建以来取得了显著成绩。大数据时代的到来,为进一步深化改革,培养经济社会需要的实用性、技能型人才创造了更好的条件。我们要本着对学生负责的态度,利用大数据平台查找教学和学生管理、服务方面存在的不足;利用大数据,发现课程、课时设置不合理的地方;通过大数据,对专业设置进行调整、增设;通过大数据,及时掌握学生学习情况;利用网络柔性引智,实现在线教学、在线研究。下一步,学院要在坚持以老带新、说课、微课程教学,重视职业能力培养的基础上,通过大数据分析,查找工作中存在的问题和不足,有针对性地改进,不断提高教育、教学、科研水平。
微课程作为当前国内流行的音频或视频课程形式,由于较好地体现了信息技术与学科教学的融合,能够帮助学生理解学习内容,提升课堂教学效果。而且,作为大数据内容的微课程在网络上不受地域和时间的限制,有利于在线学习、自主学习,是一种符合现代社会节奏的教学方法和学习方式。因此,微课程也是贵阳护理职业学院在实践中需要进一步提升、推广的有效教学方法。在大数据支持的背景下,各个专业要根据课程划分片段制作有助于学生对教学内容理解的微课程系列,适时更新,方便学生学习、复习和掌握,提高学生对时间的利用率和学习效率。
学院作为省级示范院校,所有教室都安装有在线视频教学设备,具备了翻转课堂的教学条件。作为医学类的护理职业教育,要在坚持传统课堂教学的基础上引入翻转课堂,改变“填鸭式”的教学方法,让学生通过上网查找相关资料,利用视频、智能手机观看老师提供的辅导视频进行相关知识点的学习,然后老师在课堂上有针对性提问、为学生解惑释疑,通过师生之间的讨论、互动,增强教学效果、提高学习效率。
随着大规模开放式网络课程在全球的推广,学生具有通过“慕课”形式,随时随地学习自己需要和喜欢的高等教育课程条件。“慕课”改变了优质教学资源分布不均的状况,让学生能够在任何地方都可以接受优质教育。网络大数据的生成,创造了资源共享的学习平台。学院要充分利用网络和在线教育的资源,发挥视频教学、电子阅览室和智能手机作用,为学生提供更多选择,引导学生通过高校课程资源共享平台学习、共同研讨,在深化专业教学的同时,努力帮助学生实现全方位发展。
护理职业教育要根据科技创新和社会需求,借助大数据来促进教学和培育人才模式的转型升级。学院要通过大数据和信息网络构建师生之间对等的教学相长模式,推动师生利用大数据平台形成线上线下良性互动交流的学习环境,联手科研创新。借助网络,采用大数据打破学科、班级的限制,探索构建能够满足学生愿望的网络课堂,开展专业教学。根据学生的不同特点,利用网上教室制定因人而异的学习计划、规划。通过大数据手段掌握学生情况,让教师结合实际教学、辅导和解惑释疑。学生部门根据大数据了解学生思想动态,有针对性地做好引导、疏导工作,培养心智健康、德才兼备的技能型人才。在专业设置方面,可利用大数据掌握科技创新和社会需求,有针对性地研究开设智能护理、危急重症护理、网上护理、基因修复护理、人体组织再生护理、医疗护理器械、护理机器人维修、家政和新药研发等相关专业的可行性,更好地为生态文明建设培养所需的技能型人才。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23