京公网安备 11010802034615号
经营许可证编号:京B2-20210330
商业成功的数据化五步曲
在现在这个变幻莫测的世界里,大家越来越喜欢给一个事物加个后缀—“什么什么化”。比如之前的“游戏化”,以及最近流行起来的“数据化”。数据化其实是将一个通常的商业流程转变成以数据为驱动指标的过程。整个过程大概包括了数据的收集、数据的归集与存储、数据的分析与重新建立关系--并最终发现新的商业机会。数据化相对来说是一个较新的现象,代表了数字与现实的交互。
数据化这个词如果运用到我们工作生活中能代表很多含义,而且它们应该比我们想象的还要深刻。所以,理解如何将商业过程“数据化”是非常重要的。同时,它也能让你更好的为即将到来的“数据驱动型社会”做好充足的准备。
数据化与物联网
最明显的关于数据化的例子就是代表了自我量化以及可穿戴趋势的AppleWatch。用户可以通过AppleWatch生成关于用户自身的大量数据并加以分析,也可以同其它的数据相关联从而启发出更多与个人生活息息相关的见解。
对于公司组织来说,数据化过程是从收集数据开始的--从各方数据源获取的大量数据。物联网将许多产品及装备联系在一起,为搜集各种数据提供了可能性。我们可以想象下平时人们怎样在办公室间流动(人力分析),司机是怎么开车的(交通分析),或者不同的产品的使用情况是什么样子的(产品行为分析)。
根据最近的Ericsson的数据化报告,一共有四个方面的数据化实例:
1. 个人数据化:包括客户是怎样通过智能手机上的应用程序产生个人信息数据,个人风险指数的评定以及个人信用评级等等;
2. 商业流程的大数据分析化意味着精简和提升现有的商务流程:这个可以用来重新配置现有的供应链系统或者是金融业务流程。比如说,小额支付的迅猛增长能够提供更多购买习惯的信息,从而对金融行业产生极大的影响。
3. 城市的数据化:智能城市是一个代表—城市里布满了各种智能传感器用来收集数据,从而提升城市的整体管理流程效率,比如垃圾回收、公交系统等。
4. 私人生活的数据化能够向我们展示人们平时是怎么生活的。例如,他们什么时候会打开热水器,多久洗一次衣服,喝多少咖啡等。所有这些都是从一点一滴的数据中收集出来的。
数据化五步法
综上所述,怎样做数据化呢?下面我们提供的五个步骤让你加速处理你的业务数据化流程:
1. 让你的办公场所、产品以及你的整个组织变得智能化。这意味着你能通过传感器和物联网来收集数据。记住一定要连续并且广泛地收集数据,不管是从办公室也好还是人或者设备也好。这些数据可以为后面打下很好的铺垫。
2. 取样数据放回原环境测试以确保数据质量。因为数据的质量和准确度是数据化中极其重要的一环。
3. 消除你系统中的数据孤岛。数据往往以“数据竖井”的方式分散地存放在不同的部门和个人手中。当把数据集中起来以后,比如以数据池的方式,就会将不同的数据之间建立联系,消除数据中互相孤立的情况。
4. 重新审视你的组织和业务。组织的数据化为你展开了一系列新的可能,所以你应该跳出原有的束缚,在新的架构下重新找寻新的机会。
5. 以“概念验证”为开端更好地理解大数据给你的公司组织带来的许多可能性。开始数据化过程是一点一滴来的,没办法一蹴而就。
当你正式开始做数据化的时候你就会发现,它远不只是一个技术的挑战那么容易。数据化过程涉及到整个组织的每个方面,包括商业流程,战略流程,数据监管,公司文化等。所有这些方面在做数据化时都应该被考虑到,而这并不是一个简单的任务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05