京公网安备 11010802034615号
经营许可证编号:京B2-20210330
商业成功的数据化五步曲
在现在这个变幻莫测的世界里,大家越来越喜欢给一个事物加个后缀—“什么什么化”。比如之前的“游戏化”,以及最近流行起来的“数据化”。数据化其实是将一个通常的商业流程转变成以数据为驱动指标的过程。整个过程大概包括了数据的收集、数据的归集与存储、数据的分析与重新建立关系--并最终发现新的商业机会。数据化相对来说是一个较新的现象,代表了数字与现实的交互。
数据化这个词如果运用到我们工作生活中能代表很多含义,而且它们应该比我们想象的还要深刻。所以,理解如何将商业过程“数据化”是非常重要的。同时,它也能让你更好的为即将到来的“数据驱动型社会”做好充足的准备。
数据化与物联网
最明显的关于数据化的例子就是代表了自我量化以及可穿戴趋势的AppleWatch。用户可以通过AppleWatch生成关于用户自身的大量数据并加以分析,也可以同其它的数据相关联从而启发出更多与个人生活息息相关的见解。
对于公司组织来说,数据化过程是从收集数据开始的--从各方数据源获取的大量数据。物联网将许多产品及装备联系在一起,为搜集各种数据提供了可能性。我们可以想象下平时人们怎样在办公室间流动(人力分析),司机是怎么开车的(交通分析),或者不同的产品的使用情况是什么样子的(产品行为分析)。
根据最近的Ericsson的数据化报告,一共有四个方面的数据化实例:
1. 个人数据化:包括客户是怎样通过智能手机上的应用程序产生个人信息数据,个人风险指数的评定以及个人信用评级等等;
2. 商业流程的大数据分析化意味着精简和提升现有的商务流程:这个可以用来重新配置现有的供应链系统或者是金融业务流程。比如说,小额支付的迅猛增长能够提供更多购买习惯的信息,从而对金融行业产生极大的影响。
3. 城市的数据化:智能城市是一个代表—城市里布满了各种智能传感器用来收集数据,从而提升城市的整体管理流程效率,比如垃圾回收、公交系统等。
4. 私人生活的数据化能够向我们展示人们平时是怎么生活的。例如,他们什么时候会打开热水器,多久洗一次衣服,喝多少咖啡等。所有这些都是从一点一滴的数据中收集出来的。
数据化五步法
综上所述,怎样做数据化呢?下面我们提供的五个步骤让你加速处理你的业务数据化流程:
1. 让你的办公场所、产品以及你的整个组织变得智能化。这意味着你能通过传感器和物联网来收集数据。记住一定要连续并且广泛地收集数据,不管是从办公室也好还是人或者设备也好。这些数据可以为后面打下很好的铺垫。
2. 取样数据放回原环境测试以确保数据质量。因为数据的质量和准确度是数据化中极其重要的一环。
3. 消除你系统中的数据孤岛。数据往往以“数据竖井”的方式分散地存放在不同的部门和个人手中。当把数据集中起来以后,比如以数据池的方式,就会将不同的数据之间建立联系,消除数据中互相孤立的情况。
4. 重新审视你的组织和业务。组织的数据化为你展开了一系列新的可能,所以你应该跳出原有的束缚,在新的架构下重新找寻新的机会。
5. 以“概念验证”为开端更好地理解大数据给你的公司组织带来的许多可能性。开始数据化过程是一点一滴来的,没办法一蹴而就。
当你正式开始做数据化的时候你就会发现,它远不只是一个技术的挑战那么容易。数据化过程涉及到整个组织的每个方面,包括商业流程,战略流程,数据监管,公司文化等。所有这些方面在做数据化时都应该被考虑到,而这并不是一个简单的任务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23