
2018年底前建成国家政府数据统一开放平台 把大数据巨大潜能挖出来
加快大数据部署,深化大数据应用,已成为稳增长、促改革、调结构、惠民生,以及推动政府治理能力现代化的内在需要和必然选择。《纲要》出台,正是藉此激发大数据产业的巨大潜力,释放市场主体的创新活力,为“中国制造2025”、“互联网+”再添动力——
近日,国务院印发《促进大数据发展行动纲要》,提出要全面推进大数据发展和应用,加快政府数据开放共享,深化大数据在各行业创新应用,通过建设数据强国,提升政府治理能力,推动经济转型升级。此外,《纲要》还提出,要在2017年底前形成跨部门数据资源共享共用格局,在2018年底前建成国家政府数据统一开放平台。
“这是我国第一次把发展大数据上升为国家战略。”中国电子信息产业发展研究院信息化研究中心副主任潘文在接受《经济日报》记者采访时表示,此次《纲要》发布,对推进落实“中国制造2025”和“互联网+”国家战略、促进大众创业、万众创新,推动经济和社会发展具有重要意义。
产业规模迅速增长
大数据已成为推动经济转型发展的新动力,其本身也正成为新的经济增长点。“自去年3月‘大数据’首次出现在《政府工作报告》中以来,国务院常务会议一年内6次提及大数据运用。”潘文表示,大数据充分利用优质共享的信息知识和创新资源,不断降低社会信息成本,通过基于大数据精准分析和科学决策,将有力支撑教育文化、健康医疗、电子商务、工业制造、现代农业等,提升传统产业生产效率和经济效益,同时培育形成新产业、新消费热点和新服务模式,有利于稳增长、调结构。
“与基础软件行业追逐国际主流趋势不同,我国大数据产业在国际竞争中已崭露头角,未来存在更大的发展空间和发展机遇。”潘文说。目前,我国互联网、移动互联网用户规模居全球第一,拥有丰富的数据资源和应用市场优势,大数据部分关键技术研发取得突破,涌现出一批互联网创新企业和创新应用,一些地方政府已启动大数据相关工作。
大数据产业正成为新的经济增长点,产业规模迅速增长。据赛迪顾问电子信息产业研究中心总经理张梓钧介绍,2014年,中国大数据IT市场规模达93.1亿元,增长率为37.3%。预计2015年至2017年,中国大数据IT市场年复合增长率能达到33.3%。
开放共享势在必行
在信息社会,随着大数据、云计算、物联网、移动互联网等新技术及相关的创新应用不断加快,海量数据正在政务管理、产业发展、城市治理、民生服务等众多领域不断产生、积累、变化和发展,数据资源也正和土地、劳动力、资本等生产要素一样,成为促进经济增长的基本要素。
“政府占有80%的公共信息资源,加快政府大数据资源向社会开放和利用,是政府加快行政管理改革主动适应时代发展的必要选择。”潘文说。这也正如浪潮集团董事长孙丕恕所言,开放数据,是政府部门实现数据创新应用,服务产业、企业走向升级发展道路的重要途径。
因此,《纲要》提出大力推动政府部门数据共享,在2017年底前形成跨部门数据资源共享共用格局。
“大数据能提升个性化、精准性公共服务能力。”中关村大数据产业联盟副秘书长陈新河认为,大数据让数据挖掘更加深入和精细化,从而让更为个性化并合理的公共服务成为可能。例如在医疗卫生行业,相关部门可以从多个渠道获取个人健康信息,把职业、行为等行为数据与电子病历等医疗数据关联起来,形成一个综合的健康状况模式,提供精细化的医疗服务。
也有专家指出,政务数据开放共享需注意相关法律法规体系、行政体系及带来的安全和标准问题,特别要注意保护用户隐私、知识产权保护等。
给力“双创”重塑优势
除了推动政府加快数据开放共享,《纲要》的另一大重点是推动大数据产业创新发展。潘文认为,这两者相辅相成、密不可分。首先,推动政务数据社会化增值开发,可以生产出各种各样的增值信息产品,满足社会不同层次、不同领域的需要。其次,互联网的高速发展带来了企业数据爆炸式的增长,数据已成为企业未来新战略发展的中心。
《纲要》提出了发展多个细分产业大数据,“其中,发展工业和新兴产业大数据,是重点中的重点,也是践行‘中国制造2025’和‘互联网+’行动计划的现实选择。”潘文说。
目前,我国数据价值链和产业链已初显端倪。百度、阿里巴巴、大智慧=等数据资源型和研发应用型企业初步涌现,引领着数据产业的发展。我国作为人口大国、互联网大国、消费大国、技术创新应用新高地,不论是政府部门,还是企业层面,都将产生海量数据,为进行大数据分析提供了基础支撑。
《纲要》还特别提到发展万众创新大数据。对此,潘文表示,大数据带来的新服务模式和资源分析处理能力,将带动产业技术研发体系的创新,推动跨领域、跨行业的融合和协同创新,在推动新兴产业快速发展的同时带动传统产业的协同发展,为大众创业、万众创新提供有力支撑,重塑国家竞争优势。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07