京公网安备 11010802034615号
经营许可证编号:京B2-20210330
2018年底前建成国家政府数据统一开放平台 把大数据巨大潜能挖出来
加快大数据部署,深化大数据应用,已成为稳增长、促改革、调结构、惠民生,以及推动政府治理能力现代化的内在需要和必然选择。《纲要》出台,正是藉此激发大数据产业的巨大潜力,释放市场主体的创新活力,为“中国制造2025”、“互联网+”再添动力——
近日,国务院印发《促进大数据发展行动纲要》,提出要全面推进大数据发展和应用,加快政府数据开放共享,深化大数据在各行业创新应用,通过建设数据强国,提升政府治理能力,推动经济转型升级。此外,《纲要》还提出,要在2017年底前形成跨部门数据资源共享共用格局,在2018年底前建成国家政府数据统一开放平台。
“这是我国第一次把发展大数据上升为国家战略。”中国电子信息产业发展研究院信息化研究中心副主任潘文在接受《经济日报》记者采访时表示,此次《纲要》发布,对推进落实“中国制造2025”和“互联网+”国家战略、促进大众创业、万众创新,推动经济和社会发展具有重要意义。
产业规模迅速增长
大数据已成为推动经济转型发展的新动力,其本身也正成为新的经济增长点。“自去年3月‘大数据’首次出现在《政府工作报告》中以来,国务院常务会议一年内6次提及大数据运用。”潘文表示,大数据充分利用优质共享的信息知识和创新资源,不断降低社会信息成本,通过基于大数据精准分析和科学决策,将有力支撑教育文化、健康医疗、电子商务、工业制造、现代农业等,提升传统产业生产效率和经济效益,同时培育形成新产业、新消费热点和新服务模式,有利于稳增长、调结构。
“与基础软件行业追逐国际主流趋势不同,我国大数据产业在国际竞争中已崭露头角,未来存在更大的发展空间和发展机遇。”潘文说。目前,我国互联网、移动互联网用户规模居全球第一,拥有丰富的数据资源和应用市场优势,大数据部分关键技术研发取得突破,涌现出一批互联网创新企业和创新应用,一些地方政府已启动大数据相关工作。
大数据产业正成为新的经济增长点,产业规模迅速增长。据赛迪顾问电子信息产业研究中心总经理张梓钧介绍,2014年,中国大数据IT市场规模达93.1亿元,增长率为37.3%。预计2015年至2017年,中国大数据IT市场年复合增长率能达到33.3%。
开放共享势在必行
在信息社会,随着大数据、云计算、物联网、移动互联网等新技术及相关的创新应用不断加快,海量数据正在政务管理、产业发展、城市治理、民生服务等众多领域不断产生、积累、变化和发展,数据资源也正和土地、劳动力、资本等生产要素一样,成为促进经济增长的基本要素。
“政府占有80%的公共信息资源,加快政府大数据资源向社会开放和利用,是政府加快行政管理改革主动适应时代发展的必要选择。”潘文说。这也正如浪潮集团董事长孙丕恕所言,开放数据,是政府部门实现数据创新应用,服务产业、企业走向升级发展道路的重要途径。
因此,《纲要》提出大力推动政府部门数据共享,在2017年底前形成跨部门数据资源共享共用格局。
“大数据能提升个性化、精准性公共服务能力。”中关村大数据产业联盟副秘书长陈新河认为,大数据让数据挖掘更加深入和精细化,从而让更为个性化并合理的公共服务成为可能。例如在医疗卫生行业,相关部门可以从多个渠道获取个人健康信息,把职业、行为等行为数据与电子病历等医疗数据关联起来,形成一个综合的健康状况模式,提供精细化的医疗服务。
也有专家指出,政务数据开放共享需注意相关法律法规体系、行政体系及带来的安全和标准问题,特别要注意保护用户隐私、知识产权保护等。
给力“双创”重塑优势
除了推动政府加快数据开放共享,《纲要》的另一大重点是推动大数据产业创新发展。潘文认为,这两者相辅相成、密不可分。首先,推动政务数据社会化增值开发,可以生产出各种各样的增值信息产品,满足社会不同层次、不同领域的需要。其次,互联网的高速发展带来了企业数据爆炸式的增长,数据已成为企业未来新战略发展的中心。
《纲要》提出了发展多个细分产业大数据,“其中,发展工业和新兴产业大数据,是重点中的重点,也是践行‘中国制造2025’和‘互联网+’行动计划的现实选择。”潘文说。
目前,我国数据价值链和产业链已初显端倪。百度、阿里巴巴、大智慧=等数据资源型和研发应用型企业初步涌现,引领着数据产业的发展。我国作为人口大国、互联网大国、消费大国、技术创新应用新高地,不论是政府部门,还是企业层面,都将产生海量数据,为进行大数据分析提供了基础支撑。
《纲要》还特别提到发展万众创新大数据。对此,潘文表示,大数据带来的新服务模式和资源分析处理能力,将带动产业技术研发体系的创新,推动跨领域、跨行业的融合和协同创新,在推动新兴产业快速发展的同时带动传统产业的协同发展,为大众创业、万众创新提供有力支撑,重塑国家竞争优势。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06