京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据面临的三重困难需从四个方面优化
近年来,大数据产业已成为新的技术制高点和经济增长的新动力,深刻改变着宏观经济环境,受到各国高度重视。日前在京举行的“2016中国大数据产业生态大会”上,与会专家表示,我国大数据产业当前还面临信息资源难共享、数据安全风险大、产业生态不健全等难题,需从优化产业政策入手,促其健康发展。
产业呈现良好发展态势
北京大学教授杨学山认为,我国大数据产业虽还处于探索起步阶段,但在对大数据的社会认知、政策环境、市场规模、产业支撑能力等方面都取得了积极进展,为大数据产业的可持续发展创造了良好条件。
首先,大数据产业发展政策日益完善。大数据产业是云计算技术、物联网和移动互联网广泛普及的结果。鉴于大数据对经济、社会、科研、国家安全等方面的巨大价值,中国各级政府纷纷制定相关政策推动大数据产业深入发展。
早在2011年,工信部发布的《通信业“十二五”发展规划》就把云计算定位为构建国家级信息基础设施、实现融合创新的关键技术和重点发展方向,此规划被视为较早推动大数据发展的政策。
2015年8月,国务院印发了《促进大数据发展行动纲要》,全面阐述了我国发展大数据产业的意义、目标、任务和政策,此纲要的出台标志着大数据产业已被提升为国家战略高度,逐渐完善的政策体系为大数据产业发展提供了良好条件。
其次,各地逐渐建立起了大数据产业发展平台。随着国家和地方政府大数据产业发展政策的制定和实施,大数据产业发展的相关平台也逐步建立。
据了解,到目前为止,全国各地已建成和在建的大数据产业园已达到100多个。为推动大数据研究,学术界成立了大数据专家委员会等机构,举办了大数据共享与开发、大数据技术创新、大数据运用、大数据产业发展等主题的学术研讨会。
另外,大数据的市场空间广阔且在持续扩大。大数据产业主要涉及数据的收集、存储、分析和运用等环节,其在金融、电子商务、医疗、农业、政务等领域发挥着越来越重要的作用。
虽然我国的大数据产业已彰显出巨大的市场空间和持续增长的态势。例如,金融行业利用大数据技术处理业务,提高了工作效率,降低了审计风险;交通部门利用大数据检测交通流量变化,优化了公共交通资源配置;制造业利用大数据优化生产流程。而随着企业级用户对大数据需求的持续增加,大数据的市场空间将进一步扩大。
发展仍面临三重困难
中国工程院院士孙家广认为,大数据产业发展具有极强的技术和信息依赖性,由于我国大数据产业起步滞后以及基础条件不够成熟,其在快速发展的同时,面临的困难也日渐显现。
其中一大难题便是,信息壁垒降低了大数据产业资源配置效率。大数据产业发展必须实现数据信息的自由流动和共享,如果数据不开放、不共享,数据整合就不能实现,数据价值也会大大降低。
然而,这一问题并没有得到相关政府部门的足够重视。这主要是由于地方政府没有形成与全局思维,仍认为自己的数据信息不可以开放共享,甚至将其视为抢占大数据产业发展先机的优势条件。此外,政府部门是社会信息的主要控制者,其信息又分别被不同部门和区域控制,而不同部门和区域间的数据标准各异,信息资源也就难以实现共享。
另外,数据安全管理薄弱增加了大数据产业的发展风险。
数据安全和隐私保护是大数据产业发展的世界性难题,这主要体现在三个方面:其一,数据的海量存储增加了数据安防的难度,可能造成大量数据损坏或丢失,造成难以想象的后果;其二,在大数据时代,数据的多元性和复杂性要求人们形成更强的安全意识,但现实中不论企业还是个人的安全意识还没有从传统的非信息时代转变过来,存在巨大潜在风险;其三,网络攻击带来了数据安全风险,随着大数据在政府、金融、公共事业等领域的广泛运用,数据泄露带来的损失远远超出行业范畴,而是全局性的国家安全问题。
目前,我国保护大数据安全的能力十分有限,加上大数据安全法律法规缺失、网络信息管理体制存在缺陷等问题,大大增加了我国大数据产业的发展风险。
不仅如此,产业生态体系存在短板,阻碍了大数据产业链和产业集群的形成。产业健康可持续发展的一个重要特征就是形成了完整的产业链条和多层次的生态体系。我国大数据产业仍处于起步阶段,主要体现为:各领域大数据企业分散现象普遍;产业发展、政策、平台、创新、环境等不协调;大数据企业之间分工不明确、交流合作不足、协同力度不够;大数据行业协会、产业联盟发展滞后。
需从四方面优化产业政策
中国科学院院士、北京理工大学副校长梅宏表示,为克服困难,促进我国大数据产业健康发展,相关的产业政策应从以下四方面优化:
第一,完善大数据产业发展战略规划,优化产业布局。
实践表明,新兴产业如果缺乏科学理论指导,容易出现盲目发展、重复建设、同质竞争等问题。为此,我国应尽快优化对大数据产业的战略规划,明确方向和重点,制定长、中、短期发展目标,完善投融资、知识产权、利益分配等方面的政策,为大数据产业创造良好发展环境。
第二,依托大众创新创业优化大数据产业发展环境。大众创新创业有利于增强创新驱动活力、拓宽创业渠道、优化创新环境、促进中小企业发展、优化产业结构等,这无疑是解决大数据发展创新技术受限、企业竞争不充分等问题的有效途径。
第三,加强大数据共享平台和安全保障体系建设。在数据共享方面,应尽快制定和出台《公共信息资源开发共享管理办法》,以法律形式规定公共信息资源开放共享的内容、程序、标准等,并在此基础上建立公共信息资源共享网站,形成共享服务体系;在数据安全方面,应完善国家数据安全法律法规,同时加强网络安全基础设施建设,建立和完善大数据安全应急机制,从而大幅度降低大数据风险。
第四,实施融合发展战略,构建大数据产业生态体系。这里的融合发展既包括大数据与其他产业的融合,又包括大数据企业与政府、社会组织的融合。
大数据要形成完整的产业链和生态体系,需要众多产业的支撑。因此,构建大数据产业与其他产业发展的联动机制,组建全国性、区域性的大数据产业联盟,加强大数据产业链各个环节企业的合作,显得尤为重要。大数据产业发展需要同时发挥好政府、企业、社会中介等多方面力量,聚集各方优势。企业应在产业发展过程中充当主体地位,政府应根据企业的需求,提供政策和服务。社会中介组织也不容忽视,政府部门应加强对大数据行业协会、科研机构、产业联盟等组织的培育和扶持,充分发挥它们在理论研究、技术研发、社会调研等方面的作用,使之成为推动大数据产业发展的另一支重要力量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21