
大数据,给健康产业带来哪些变革
你发的每一条微信,打的每一通电话,也许就能预警你是否有感染流行病的风险……这不是科幻,这是全世界已经起步开展的大数据精准医疗。
日前,浙大一院正式成立“精准医疗中心”,中国工程院院士、浙大一院传染病诊治国家重点实验室主任、感染性疾病诊治协同创新中心主任李兰娟教授作了“医疗健康大数据与精准医学”的专题报告。
“精准医疗大数据的普及化,正带来中国乃至全球健康产业的变革。”在接受钱报记者专访时,李兰娟表示,不远的将来,大数据支持下的精准医疗将为每一个病人定制治疗方案,它也将改变国家的医疗投入的格局。
精准医疗
提供个性化治疗
大数据技术,能够分析大量繁杂的数据集,发现疾病和治疗手段之间的有效联系,它将改变传统的治疗方案。
美国提出精准医疗的计划,利用大数据的分析,找出个性化的缺陷,真正对症下药,因人而异。这个办法帮助乔布斯延长了几年的生命。
我们国家的精准医疗研究,也在积极跟进。2014年7月,李兰娟和团队在《自然》杂志发表了科研成果论著,揭示肠道菌群与肝硬化的秘密,给全球医学科技研究提供了新思路。
一直以来,很多肝硬化患者,都接受过抗生素的治疗,但是李兰娟和她的团队发现,这样做并不能带来很好的效果,因为抗生素不仅杀死了肠道内的有害细菌,有益细菌同样也被杀死了。
肠道微生物是提供人体营养、调控肠道上皮发育和先天性免疫的不可缺少的“器官”,她把注意力聚焦在“肠道菌群”上,经过近3年时间的研究,他们收集了181个中国人肠道菌群的样本,其中98个是肝硬化患者的粪便样本,83个来自健康志愿者。
团队采用了新一代测序技术、以及大数据分析技术,产出了近860GB的序列数据,通过研究发现了28种与肝硬化病人密切相关的“坏细菌”;数据比对还显示,有38种与健康人密切相关的“好细菌”,在肝硬化病人肠道菌群中的量却非常少。
这就意味着,今后针对肝硬化病人的治疗,可以做到更加精准,“我们会给肝硬化病人补充更多的‘好细菌’,杀死过高的‘坏细菌’。”李兰娟说,在药物基因组学的基础上,这个工作还能够做得非常精准,“针对不同病人,运用合适的药物,合适的剂量。”
“精打细算”的
外科手术
大数据技术已经开始在外科手术中,帮助病人得到更加高效的手术疗效。
中国工程院院士、浙大一院院长郑树森教授,是我国著名的器官移植专家。到目前为止,他带领团队已经成功进行了200余例活体肝移植手术。
肝脏是人的造血器官,“统帅”了成千上万根血管,对肝脏动手术,是有高难度的。
在先进的数字技术支持下,郑树森团队能够在活体肝移植在术前和术中,利用虚拟现实软件,查看病人肝脏中的各种构造。大数据分析还能够精准计算出需要移植的肝脏部分,一方面确保提供给受捐者充足的供血,能够存活;同时评估受捐者剩下的肝脏,能否在半年内长出新的肝脏,保证恢复正常的肝功能。
在世界各地,具有大数据处理功能的手术器械已经成为外科医生强有力的助手。比如,在摘除肿瘤组织的外科手术中,外科医生遇到的最大挑战是:一次手术是否能够把癌变组织切干净。像乳腺癌肿瘤的手术中,有将近三分之一都无法做到完全抹除肿瘤的痕迹。
前不久,伦敦大学帝国学院Zoltan Takats 探索了一场“精准手术”,手术使用的先进武器iknife,在传统手术刀前安装传感器和质谱分析仪,刀起落下iknife能在第一时间告知病灶的边界和性质。
大数据
指导医疗政策
大数据能够更加科学地论证药物使用的效果,为医疗政策指导方向。
2012年,李兰娟曾经带领团队做了一个跟乙肝传染率相关的课题,采集了浙江1000人次的体检数据样本。通过分析发现:当年20岁(1992年出生)以上的样本,乙肝感染率在8%-10%;而20岁以下的样本中,乙肝感染率小于1.5%。
为什么只相差一岁,乙肝感染率就有那么大的差距?
1992年这一年,是个关键词。1992年,卫生部将乙肝疫苗纳入计划免疫管理。通过大数据技术分析,李兰娟团队验证了药物的有效性,这样的分析结果,将给国家制定公共卫生政策,带来科学的指导。
“如果我国继续保持对新生儿进行乙肝疫苗的全面接种,同时成年人也尽快接种乙肝疫苗,那么在十年后,中国将摆脱肝炎大国的帽子。”李兰娟说。
开发大数据
预测疾病
有了大数据的分析,“看医生”模式正在转变为“被医生看着”——你的可穿戴设备能够做到24小时给你“做体检”,这种全数据模式成本低,效率却很高,几乎所有人都可以用。
“精准医疗的长期目标,是每个人的健康管理。” 接下去,李兰娟团队将在浙江创建一个人数规模超过100万的志愿者队列,他们愿意共享他们的基因数据、生物样本、生活信息以及所有的电子健康信息。
这是一个融合参与者、有责任的数据共享以及隐私保护的新型研究模型。基于这份健康大数据,浙大一院团队将能够做一系列新研究,比如药物基因组学研究,医生可以更准确地为每个病人开出合适的药物和合适的剂量;比如为病人设定新的治疗和预防目标。
世界医疗产业最发达的美国,在医疗创业领域冒出了许多基于大数据,做疾病预防方面的高科技产品——
美国人Anmol Madan和团队创立了一个公司,专注研究通过手机的数据分析,预测机主的疾病。
他们对实验参与者手机超过32万小时的数据进行收集分析后,最终能够对人们的手机建模,来预测感冒、精神疾病等等。比如,当人抑郁时,通常就能够在与人交流中被看出变化,日常数据分析就能够捕捉这些变化。在测试中,这个应用能够正确判断60%~90%人们日常的生理症状和普通呼吸情况,同时把这些变化发通知给机主本人,未来还能发送给朋友或家人。
深度开发大数据,预测疾病,还可能大幅降低医疗保健的费用。麦肯锡全球研究院报告,如果美国医疗保健行业对大数据进行有效利用,就能把成本降低8%左右,从而每年创造出3000亿美元的价值。
“在中国,大数据也将影响医改的具体政策,比如医保的投入。”李兰娟说。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29