
不要着急玩大数据
沸沸扬扬的“大数据(Big Data)”,把很多企业、很多人搞得魂不守舍,蠢蠢欲动,似乎只要一玩大数据,大家都可以发大财似的。
其实,你只要静下心来想一想,很多企业,似乎还没有资格去玩什么大数据。
因为,“微数据(Micro Data)”、“小数据(Small Data)”你都还没有搞清楚,你去玩什么“大数据”?
那么,什么叫微数据呢?
说简单点,所谓的微数据就是你自己的数据,如制造业普遍使用的ERP数据。很多企业,花了很多钱上了ERP,结果还是“不好使”,给客户及时交货率没有提高,呆滞库存还是数不清,库存周转率还是上不去,为什么?
很多人抱怨是上错了ERP,或者怪ERP功能不完善,更有甚者是把使用了多年的BAAN/ORACLE换成了SAP,结果呢?还是那个样儿!
这是为什么?
业务流程、组织架构没有与ERP有效结合是个很重要的原因,但ERP内部数据不准确,却是个重中之重的原因!
所以,我跟很多企业讲,其实你不需要这么昂贵的ERP,你花十分之一、甚至是百分之一的钱,用个金蝶K3或者用友的U8也就足够了,因为“一只拿着木头棒子的猴子,完全可以杀死一头拿着AK47(突击步枪)的猪”(注:这句话不是我说的,是我伟创力一个兄弟的发明),你信不信?
关键的问题是你先理清你的微数据。
微数据包括主数据(Master Data),如BOM数据,交易数据(Transactional Data),如收、发货的数据等等,但这些说白了都属于企业内部的数据,理论上是完全可控的,但你真正控制住了吗?
我的TIM审核、数据挖掘的12张表,基本都属于“微数据”的范畴,但又有几家企业能够比较完整地提取出来?
接下来才是所谓的“小数据”,见附图第二层。
小数据是指企业外部的,但是又是来自于合作伙伴的数据,如供应商的库存,客户的库存,甚至是供应商的供应商的库存,客户的客户的库存。
这些数据基本上也是可控的,但前提是需要ERP之外的工具链接,如一些供应链管理协同软件,类似E2OPEN等等。
但现在的问题是,这些小数据,对很多企业来讲也是个巨大的挑战。
我在审核很多企业的供应链管理过程中,发现一种我称之为“伪VMI”的现象。我的很多咨询客户的客户要他们做VMI(供应商管理库存),但客户的客户每天用了他们多少东西,什么时间用的,用了多少,又不告诉人家,没有任何系统对接,只有等到财务月结的时候才产生个数据,准不准也不知道,这叫什么VMI?当然,“伪VMI”还包括让供应商被动地补货,这里就不多讲了。
小数据搞不定,又会直接影响大数据分析的准确性,反之亦然,于是就乱成了一锅粥。物流的三流(物流、信息流、资金流)被讲了多少年了,但最基础的信息流,也就是数据流都搞不清楚,又哪来的物流、资金流?
小、微数据乱了套,搞大数据又有啥用?
从供应链管理的角度,基础原材料的供应市场分析应该属于所谓大数据的范畴。如,你要研究电子元器件的价格、供应走势,你就必须从大数据的角度,来研究硅、镍、铜等基础原材料的市场情况;你要研究哪款产品好卖,你就要从大数据角度,研究终端消费者的消费行为、习惯等等。
但问题是,你大数据研究的再好,你的小数据、微数据不给力,你不是该出不去货,还是出不去,该有的呆滞库存,你还还是有吗?
基础打不好,你即使能伸到“云”里去,又能怎么样呢?
从“微”到“小”,再从“小”到“大”,这是个规律啊!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07