京公网安备 11010802034615号
经营许可证编号:京B2-20210330
因应大数据时代,电脑架构也要大改造
几乎所有的人对沃森电脑的印象,都停留在「危险边缘」节目上看到的画面:冷冰冰、深紫色系的电脑萤幕,竖立在另外两位人类参赛者中间,会发出诡异的电脑语音。
完整的沃森电脑,当然不只是电视萤幕上看到的那样,如果有机会前往纽约参观IBM全球研发中心位於约克城高地的实验室,你就会看到原汁原味的沃森电脑,不但能够理解为什麽沃森电脑能在「危险边缘」中胜出,也会同意为什麽非得用颠覆传统的方式,才能设计出新世代的认知运算电脑了。
沃森电脑放置在约克城高地实验室二楼的数据中心,由九十二台伺服器组成,堆满整整两排冰箱大小的金属框架。这两排金属框架之间的走道尽头,有一道门,形同把沃森电脑所在的房间,再隔出一个小房间。走进这个小房间,你会听到室内空调的风扇跟伺服器本身的小风扇一起嗡嗡作响,震耳欲聋,可见沃森电脑微处理器散发的热量非常可观。这可不是一件好消息。
固然,在「危险边缘」比赛的时候,沃森电脑微处理器运作的速度,比世上第二快的一般电脑的运作速度,还要再快上以数据为中心的电脑一倍;但是代价就是,沃森电脑会散发庞大的热量、以及散热风扇会发出不小的噪音。这显示了耗能问题非常严重:沃森电脑全速运转时的耗电量,高达八万五千瓦,足以提供一座小镇的照明所需;相较之下,人脑只需要消耗二十瓦的能量而已。
除非我们可以用连跳好几个数量级的方式,来提升电脑的运作效率,否则未来认知运算电脑的成本,将高到很难成为我们广泛运用的好帮手。IBM全球研发中心的科学家认为,如果要在大数据时代设计出符合环境永续概念的电脑,我们一定要能设计出新型态的电脑──以数据为中心的电脑。
新电脑必须大幅减少传输数据的动作
传统电脑以处理器为核心,由微处理器扮演冯诺伊曼架构里中央处理器的角色,这自然也是电脑执行最多动作的地方。微处理器搭载作业系统後,会向电脑的其他组件发出指令,像是要求记忆体、硬碟传输数据等。而如果是大型网路中的一台电脑,则有可能需要用远端传输的方式,才有办法取得其他电脑储存的数据。
新世代的电脑一定要能大幅减少传输数据的动作,也就是以数据、而不是处理器做为运作核心。按照IBM先进系统设计部门主管达华里(Bijan Davari)的说法,新的设计架构将可以把许多任务毕其功於一役,不但可以增加电脑运作的速度,大幅提升省电效果,更重要的是促成充分利用大数据的可能性。
电脑的运算能力自从1970年代,工程师开始在单晶片里塞进愈来愈多的电晶体後,获得了迅速提升,专业术语叫做堆栈(scaling),意指在相同面积上堆放更多资源的能力,好比说是更紧密的电路布局、或是更多的记忆容量。而在单晶片完成更多堆栈的过程,就叫做微缩(scaling down)。
不论是企业界或是政府单位的电脑,经过多年使用之後,都需要更优秀的运算能力,因此电脑业者开始推出伺服器,专门处理大量、复杂的工作,主要的做法有两种,其中一种是在一台伺服器内,装上运算能力更强的零组件与其他资源,通称为升级(scaling up),IBM的大型主机即采取这种做法;另一种做法是扩充(scaling out),是把多台伺服器串连、视同一台大型伺服器般使用,这也是超级电脑跟Google数据中心伺服器大军的做法。
IBM的科学家相信,未来以数据为中心的电脑将具备一种基本特徵:电脑工程师会设法把记忆体跟逻辑线路,整合在一以数据为中心的电脑颗紧致的立体晶片中,采用敛合(scaling in)的新堆栈方法。
新玩意:混合记忆体模块
现今的记忆体只是把一层矽晶跟数不清的数据存取线路,整合成一颗电子元件,主要做为数据暂存区之用,并依照微处理器的需求传输数据。
记忆体在电脑内占有一定空间,数据传送也是个负担沉重的工作;如果把记忆体晶片像一层层烤饼堆叠在一起呢?那不但可以大幅缩减体积,同时也能减少数据传送的负担。这种新概念的产物,就是IBM与其他电脑大厂正在研发的混合记忆体模块(hybrid memory cube)。
混合记忆体模块是个奇特的小玩意儿,可以在一个立方体内把好几层记忆体堆叠在一起,在垂直贯穿模块的一个小通道内配置线路,用铜线把所有物件串连在一起,让最底层的逻辑线路可以直接连结到其他各层的记忆体,只把萃取过的减量数据传送给微处理器统合使用。这种新设计可以缩减现有记忆体百分之九十的体积,减少百分之七十的耗能。
未来,记忆体模块渴望再内建微处理器,逐步走向记忆体与处理器合而为一的境地,打破冯诺伊曼瓶颈的限制。
这项新科技会对未来的电脑带来重大影响,譬如用於原油探钻、汽车撞击测试的大型超级电脑,体积会变得更小、更省电,下一代使用混合记忆体模块的伺服器数据中心,也不再需要在庞大的室内空间耗掉可观的散热电力。这项技术继续发展的话,未来即便是智慧型手机、平板电脑、或是其他行动装置,也都可以将运算能力提升到一个难以想像的境界。
新概念:微处理器分散架构
以数据为中心的电脑具备的第二种基本特徵是:电脑内部的分散式配置方式。
今日的电脑,有微处理器担任神经中枢的角色,负责处理所有或大部分的运算工作,因此运算时派得上用场的数据,都要在原本存放的位置与微处理器之间不断往返传递,用跑马拉松来形容也不为过。未来以数据为中心的电脑,会把微处理器分散在系统的不同位置,大大降低数据搬动的必要性。
微处理器分散架构的概念,已经在某些专门用於分析庞大数据数据的特用电脑上进行测试。纽约州立大学水牛城分校神经科学教授拉曼纳森,即参与了其中某一项测试计画。
多发性硬化症会让人痛苦异常,患者的免疫系统会主动攻击自身的大脑与脊髓,导致病患失去行动能力,并造成认知失调问题。这种疾病多半会在年轻成年人的身上发病,目前病因成谜,也无法医治。拉曼纳森的研究主题,是找出基因和环境因素与多发性硬化症的相关性,进而找到医治的方法,或是起码找到能够预先防治的方法。拉曼纳森研究工作最大的挑战,在於人类基因可能导致多发性硬化症的组合方式实在太多了,如果再加上饮食作息、抽菸喝酒等环境因素的影响,则多发性硬化症潜在病因的可能组合,将呈现指数般的爆炸性成长。
换句话说,拉曼纳森的研究重点在於克服庞大数据带来的技术障碍,而传统超级电脑欠缺大量平行运算的能力,因此也没办法有效处理拉曼纳森所面对的问题──亦即所谓数据密集(data-intensive)的问题。拉曼纳森需要一台可以把研究主题切割成许多分段、送交好几千颗微处理器进行平行运算後,再从平行运算的结果推导出最後答案的电脑。如果要有效解决拉曼纳森面临的难题,势必要采用平行运算搭配以数据为中心的微处理器架构。
於是,拉曼纳森的研究团队设计一台专门用於数据密集分析的电脑,这台冰箱大小的专用电脑采用特制的微处理器「现场可程式闸阵列」(field programmable gate array, FPGA),在数据储存区先行过滤数据,之後再把有用的部分传给中央处理器,进行後续的数据分析。这套微处理器可以程式化设定需要搜寻的数据,因此可以有效过滤高达九成的数据量,让中央处理器仅针对筛选过的数据进行分析即可,不用照单全收;就形式上而言,如同传统电脑只在记忆体进行存取,省去读取硬碟的步骤。如此一来,这台专用电脑可以减少数据搬动,连带达到省电效果,并提升电脑中枢的运算速度与效率。
接下来,我们用拉曼纳森研究数据分析团队实际取得的绩效,说明这台新电脑的效率高到什麽程度。研究团队完成安装後不久,把十万种基因组合与包含各种环境因素在内的数据,统统输入电脑进行运算──相当於有五十亿种「双变数」的组合、或是一百兆种「三变数」的组合需要进行推算。
结果,新电脑只花了十一分钟,就把传统电脑需要花二十七小时计算的答案,给算出来了。坐在纽约州立大学办公桌前的拉曼纳森,收到一封运算结果摘要报告的电子邮件,他说:「这个结果让我感到兴奋莫名,有如在眼前开启了一扇机会之窗。我们,终於有机会解决以往难以处理的问题了。」
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27