
R语言之数据结构
R语言拥有许多用于存储数据的对象类型,包括标量、向量、矩阵、数组、数据框、列表、因子。
1.标量:标量是只包含一个元素的向量
1
2
3
|
> a <- 1; # 数值型
> b <- "China"; # 字符型
> c <- TRUE; # 逻辑型
|
2.向量:向量用于存储数值型、字符型或逻辑型数据的一维数组。通过c()函数来创建向量
1
2
3
|
> d <- c(1,2,3);
> e <- c("China","USA");
> f <- c(T,F,F,T);
|
3.矩阵(matrix):矩阵是一个二维数组,每个元素都拥有相同的模式(数值型、字符型、逻辑型),一般通过函数matrix()来创建矩阵
matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE, dimnames = NULL) data:包含了矩阵的元素; nrow 和 ncol:用于指定矩阵的行数和列数; byrow=F:默认创建的矩阵按照列进行排列; dimnames:创建矩阵时可以设置行和列的名称(必须为列表形式);
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
> m1 <- matrix(1:8,nrow=4)
#默认按列填充
> m1
[,1] [,2]
[1,] 1 5
[2,] 2 6
[3,] 3 7
[4,] 4 8
#设置byrow=T,将元素按照行进行填充
> m2 <- matrix(1:8,nrow=4,byrow=T)
> m2
[,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6
[4,] 7 8
# 设置矩阵行和列的名称
> m3 <- matrix(1:8,nrow=4,byrow=T,dimnames=list(c("r1","r2","r3","r4"),c("c1","c2")))
> m3
c1 c2
r1 1 2
r2 3 4
r3 5 6
r4 7 8
|
4.数组(array):与矩阵类型,但是维度可以大于2,数组可以通过array()函数进行创建;数组中的数据也只能拥有一种模式(数据类型),如果数组中的数据有其他的数据类型,R会自动将所有数据转换为同一模式
array(data = NA, dim = length(data), dimnames = NULL) data:包含了数组中的数据; dim:是一个数值型的向量,给出了各个维度下标的最大值; dimnames:各个维度名称标签的列表;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
> arr <- array(1:24,dim=c(4,3,2))
> arr
, , 1
[,1] [,2] [,3]
[1,] 1 5 9
[2,] 2 6 10
[3,] 3 7 11
[4,] 4 8 12
, , 2
[,1] [,2] [,3]
[1,] 13 17 21
[2,] 14 18 22
[3,] 15 19 23
[4,] 16 20 24
|
5.数据框(data.frame):数据框类似于二维表格,包含行和列,是R中最常处理的数据结构。不同的列可以包含不同的模式,每一列数据的模式必须唯一;数据框可以通过函数data.frame()进行创建data.frame(..., row.names = NULL, check.rows = FALSE, check.names = TRUE, stringsAsFactors = default.stringsAsFactors())row.names:设置数据框行的名称; check.rows:默认为FALSE,检查行的名称和数量是否一致; check.names:逻辑值,默认为TRUE,如果为TRUE,变量的名称不能够重复,如果重复,则R会自动进行转换以保证列名不同; stringsAsFactors :是否将字符串转换为因子(factor)类型,stringsAsFactors 默认为TRUE,即default.stringsAsFactors()的值为TRUE,将字符串转换为因子;
1
2
3
4
5
6
7
8
9
10
11
|
> g <- data.frame(a=c(1,2,3),a=c(4,5,6),row.names=c("n1","n2","n3"),check.names=T)
> g
a a.1
n1 1 4
n2 2 5
n3 3 6
> g["a.1"] #由于数据框g有重复列名a,因为设置了check.names=T,R内部会自动将第二列的列名a转换为a.1
a.1
n1 4
n2 5
n3 6
|
6.列表(list):是一个有序对象的集合,列表允许整合若干对象到单个对象名下,可以通过list()函数进行创建
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
> k <- list(d=5:9,e="China") # 创建列表k,包括d和e两个对象
> l <- list(title="mylist",a=1:3,b=matrix(1:8,nrow=2),c=c("one","two"),k) #创建列表l,l列表中包含了列表k(列表中也可以包含列表对象)
> l
$title
[1] "mylist"
$a
[1] 1 2 3
$b
[,1] [,2] [,3] [,4]
[1,] 1 3 5 7
[2,] 2 4 6 8
$c
[1] "one" "two"
[[5]]
[[5]]$d
[1] 5 6 7 8 9
[[5]]$e
[1] "China"
|
7.因子(factor):类别(名义型)变量和有序类别(有序型)变量在R中称为因子。因子型数据在计算机内部存储为整型数据,因子水平属性将每个整型数据映射到一个因子水平上。因为整型数据占的存储空间较少,因 此这种方式比字符串向量更节省存储空间。
factor(x = character(), levels, labels = levels, exclude = NA, ordered = is.ordered(x), nmax = NA) x:用于转换为因子的字符向量数据; levels:因子水平向量,因子型变量可以取得的所有值被称为因子水平; labels:字符型向量,labels与levels有相同的数量或者只有一个; excelude:生成水平时要去除的水平; ordered:默认为FALSE,设置为TRUE,表示有序型变量,用以确定levels 是否应该被视为有序的(按照给定的顺序); nmax: 设定水平数量的上限值
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
> x <- factor(x=c("middle","small","big","large"),levels=c("small","middle","big","large"),ordered=T)
> x
[1] middle small big large
Levels: small < middle < big < large # R在输出有序因子时会显示因子水平的顺序
> y <- factor(x=c("middle","small","big","large"),levels=c("small","middle","big","large"),ordered=T,labels=c(1,2,3,4))
> y
[1] 2 1 3 4
Levels: 1 < 2 < 3 < 4
> z <- factor(x=c("middle","small","big","large"),levels=c("small","middle","big","large"),exclude=c("small","middle"))
> z
[1] <NA> <NA> big large # 由于去除了水平small和middle,所以原始数据中水平为small和middle的值输出为NA
Levels: big large
> x.integer <- unclass(x) # 通过移除因子x的类属性创建整型向量x.integer 注意此时因子x本身并没有发生变化
> x.integer
[1] 2 1 3 4
attr(,"levels")
[1] "small" "middle" "big" "large"
> class(x.integer)
[1] "integer"
|
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29