
R语言之数据结构
R语言拥有许多用于存储数据的对象类型,包括标量、向量、矩阵、数组、数据框、列表、因子。
1.标量:标量是只包含一个元素的向量
1
2
3
|
> a <- 1; # 数值型
> b <- "China"; # 字符型
> c <- TRUE; # 逻辑型
|
2.向量:向量用于存储数值型、字符型或逻辑型数据的一维数组。通过c()函数来创建向量
1
2
3
|
> d <- c(1,2,3);
> e <- c("China","USA");
> f <- c(T,F,F,T);
|
3.矩阵(matrix):矩阵是一个二维数组,每个元素都拥有相同的模式(数值型、字符型、逻辑型),一般通过函数matrix()来创建矩阵
matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE, dimnames = NULL) data:包含了矩阵的元素; nrow 和 ncol:用于指定矩阵的行数和列数; byrow=F:默认创建的矩阵按照列进行排列; dimnames:创建矩阵时可以设置行和列的名称(必须为列表形式);
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
> m1 <- matrix(1:8,nrow=4)
#默认按列填充
> m1
[,1] [,2]
[1,] 1 5
[2,] 2 6
[3,] 3 7
[4,] 4 8
#设置byrow=T,将元素按照行进行填充
> m2 <- matrix(1:8,nrow=4,byrow=T)
> m2
[,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6
[4,] 7 8
# 设置矩阵行和列的名称
> m3 <- matrix(1:8,nrow=4,byrow=T,dimnames=list(c("r1","r2","r3","r4"),c("c1","c2")))
> m3
c1 c2
r1 1 2
r2 3 4
r3 5 6
r4 7 8
|
4.数组(array):与矩阵类型,但是维度可以大于2,数组可以通过array()函数进行创建;数组中的数据也只能拥有一种模式(数据类型),如果数组中的数据有其他的数据类型,R会自动将所有数据转换为同一模式
array(data = NA, dim = length(data), dimnames = NULL) data:包含了数组中的数据; dim:是一个数值型的向量,给出了各个维度下标的最大值; dimnames:各个维度名称标签的列表;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
> arr <- array(1:24,dim=c(4,3,2))
> arr
, , 1
[,1] [,2] [,3]
[1,] 1 5 9
[2,] 2 6 10
[3,] 3 7 11
[4,] 4 8 12
, , 2
[,1] [,2] [,3]
[1,] 13 17 21
[2,] 14 18 22
[3,] 15 19 23
[4,] 16 20 24
|
5.数据框(data.frame):数据框类似于二维表格,包含行和列,是R中最常处理的数据结构。不同的列可以包含不同的模式,每一列数据的模式必须唯一;数据框可以通过函数data.frame()进行创建data.frame(..., row.names = NULL, check.rows = FALSE, check.names = TRUE, stringsAsFactors = default.stringsAsFactors())row.names:设置数据框行的名称; check.rows:默认为FALSE,检查行的名称和数量是否一致; check.names:逻辑值,默认为TRUE,如果为TRUE,变量的名称不能够重复,如果重复,则R会自动进行转换以保证列名不同; stringsAsFactors :是否将字符串转换为因子(factor)类型,stringsAsFactors 默认为TRUE,即default.stringsAsFactors()的值为TRUE,将字符串转换为因子;
1
2
3
4
5
6
7
8
9
10
11
|
> g <- data.frame(a=c(1,2,3),a=c(4,5,6),row.names=c("n1","n2","n3"),check.names=T)
> g
a a.1
n1 1 4
n2 2 5
n3 3 6
> g["a.1"] #由于数据框g有重复列名a,因为设置了check.names=T,R内部会自动将第二列的列名a转换为a.1
a.1
n1 4
n2 5
n3 6
|
6.列表(list):是一个有序对象的集合,列表允许整合若干对象到单个对象名下,可以通过list()函数进行创建
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
> k <- list(d=5:9,e="China") # 创建列表k,包括d和e两个对象
> l <- list(title="mylist",a=1:3,b=matrix(1:8,nrow=2),c=c("one","two"),k) #创建列表l,l列表中包含了列表k(列表中也可以包含列表对象)
> l
$title
[1] "mylist"
$a
[1] 1 2 3
$b
[,1] [,2] [,3] [,4]
[1,] 1 3 5 7
[2,] 2 4 6 8
$c
[1] "one" "two"
[[5]]
[[5]]$d
[1] 5 6 7 8 9
[[5]]$e
[1] "China"
|
7.因子(factor):类别(名义型)变量和有序类别(有序型)变量在R中称为因子。因子型数据在计算机内部存储为整型数据,因子水平属性将每个整型数据映射到一个因子水平上。因为整型数据占的存储空间较少,因 此这种方式比字符串向量更节省存储空间。
factor(x = character(), levels, labels = levels, exclude = NA, ordered = is.ordered(x), nmax = NA) x:用于转换为因子的字符向量数据; levels:因子水平向量,因子型变量可以取得的所有值被称为因子水平; labels:字符型向量,labels与levels有相同的数量或者只有一个; excelude:生成水平时要去除的水平; ordered:默认为FALSE,设置为TRUE,表示有序型变量,用以确定levels 是否应该被视为有序的(按照给定的顺序); nmax: 设定水平数量的上限值
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
> x <- factor(x=c("middle","small","big","large"),levels=c("small","middle","big","large"),ordered=T)
> x
[1] middle small big large
Levels: small < middle < big < large # R在输出有序因子时会显示因子水平的顺序
> y <- factor(x=c("middle","small","big","large"),levels=c("small","middle","big","large"),ordered=T,labels=c(1,2,3,4))
> y
[1] 2 1 3 4
Levels: 1 < 2 < 3 < 4
> z <- factor(x=c("middle","small","big","large"),levels=c("small","middle","big","large"),exclude=c("small","middle"))
> z
[1] <NA> <NA> big large # 由于去除了水平small和middle,所以原始数据中水平为small和middle的值输出为NA
Levels: big large
> x.integer <- unclass(x) # 通过移除因子x的类属性创建整型向量x.integer 注意此时因子x本身并没有发生变化
> x.integer
[1] 2 1 3 4
attr(,"levels")
[1] "small" "middle" "big" "large"
> class(x.integer)
[1] "integer"
|
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18