京公网安备 11010802034615号
经营许可证编号:京B2-20210330
你也许会犯,营销人员使用数据分析的5个误区
许多公司可能都在顺应大数据发展的潮流,希望通过数据分析来指导营销的发展方向,但是他们是否能在实际的营销活动中实现数据的价值呢?
数据分析《大数据时代》的作者Victor教授说,人们应该知道如何从大数据中发掘价值,对数据的第一次使用只实现了其价值的冰山一角。许多公司可能都在顺应大数据发展的潮流,希望通过数据分析来指导营销的发展方向,但是他们是否能在实际的营销活动中实现数据的价值呢?借由数据分析来达到营销活动的成功对于没有经验的营销团队也许是个挑战。
以下是常常导致企业未能充分利用数据的五个误区。 1.未能充分利用人口统计信息
过去,营销人员只能通过传统的市场调查获取有关消费者和受众的性别﹑年龄﹑家庭收入等极为有限的信息。在今天这个数据采集和管理方式都大有进步的时代,获取信息和数据几乎不受限制,这种情况得到了颠覆性的改变。遗憾的是,即便能够获取到大量的信息,许多营销人员对数据的运用仍处于非常肤浅的阶段。
根据2013年TheNeustarGlobalMediaIntelligence的报告,零售营销人员根据消费者的家庭观念和购买汽车的品牌来进行目标市场定位的营销活动比未定位目标市场的营销活动相比,市场表现提升了500%。联想最近发现,通过个性化地定制网站广告能为联想提升30%的点击率,并增加40%的购买转化率。联想的研究显示,如果营销活动结合消费者的其他信息,比如他们的信用和兴趣,都能有效地促成购买转化。 2.关注错误的度量指标
数据的解读和运用需要和背景资料相结合,Facebook的粉丝数﹑App的下载量等看上去颇为壮观的数据很容易导致错误的数据分析,或者营造出成功的错觉。这些指标与那些更为深刻的行为数据(如导航路径﹑品牌偏好)相比,就显得苍白无力了。Silverpop曾经委托ForresterConsulting进行的一项研究发现,B2B营销人员利用行为数据将销售渠道扩大了34%,非行为数据导向的营销只能扩展26%。即便是营销活动的主要目标是提高品牌知名度,消费者对品牌的记忆度和参与度数据还是比网页的浏览数量更具研究价值。
3.忽略线下活动
传统的prospect-lead-customer销售漏斗模型已不再适用于当今顾客做出购买决定的方式。如今的营销活动贯穿了多种渠道,这就使得企业正在收集一些他们不常追踪或者分析的数据。由于现在企业都把关注的重点放在新的数字化指标上,这样很容易忽略或者误判线下的活动,比如把顾客在实体店的购买行为归功于线上广告。根据Twitter的一项研究,在线上与品牌产生互动的消费者更有可能在实体商店进行购买(平均能带来12%的销售增长)。o2o营销的未来发展趋势应该是线上互动以促进线下购买。线上和线下的无缝转换也需要通过数据库来进行管理,并根据数据分析的结果作出优化建议。如果没有像NeustarAKClosedLoop这样的数据分析工具,这些线下购买转化的原因很可能被看作一个巨大的谜团。
4.数据分析和营销行动脱轨
营销活动从策划到实施,每个阶段都应该和数据分析紧密结合,及时与企业各部门沟通,共享数据分析的结果。传统的营销团队行动滞后,常常用之后调查出的数据来支持他们已经做出的决定。相对来说,有远见的营销人员不仅仅运用数据对过去进行批判,而且能够预测未来。AmericanExpress使用预测性的分析和行为数据来识别高风险顾客,以减少损失。在过去,AmericanExpress会挑选出100名普通客户样本进行风险测评,现在他们使用了IBM推出的SPSS预测分析建模软件来辨别可能产生风险的客户。他们发现,软件模型识别流失风险的能力与之前相比提高了8.4倍。另外,预测性的数据分析能够在营销活动开始之前就推动ROI,并在营销活动进行中通过不断地调整来实现实时的效益最大化。
5.让未经培训的员工处理数据
在理想的状态下,数据能够促进文化转变,数据不仅仅运用在营销活动的每个阶段,而且贯穿企业的整个商业活动。同时,许多企业也会在处理数据的技巧上遇到麻烦。CompTIA与美国500名商业和IT界的管理人员进行访谈后发现,60%的参与者清楚地知道需要提高数据管理和分析的水平。准确严谨地使用数据需要一定的投入,企业对数据运用的投入包括:训练现有员工,聘请内部的专家,请教外部分析师或是购买新技术。没有付出就不会有回报,不要指望社交媒体的实习生就能轻松玩转数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16