
运用大数据服务供给侧改革
我国“十三五”的中心任务是提高经济增长的质量和效益,而推动供给侧改革构建高精尖经济结构也是为了更好地服务这个中心任务。可以说,宏观经济的质量和效益源于中观产业,中观产业又源于微观的市场主体即企业。所以,作为市场主体的企业质量好坏直接会给经济带来影响。
那么,在北京构建高精尖经济结构的大背景下,我们如何来判断哪些是高精尖的企业?哪些企业经济贡献非常大?哪些对外投资辐射特别强、专利技术多、人均纳税高,而且获得过国际资本和国内优质资源投资,单位能耗特别小呢?对此,北京市政协委员、龙信数据首席数据科学家屈庆超给出了答案。
屈庆超指出,当下运用大数据对企业信息进行监测不仅能为政府提供宏观经济数据,同时在中观上也能反映一个产业的发展动态,在微观上也能反映企业的相关信息,有助于精准助力供给侧改革,构建高精尖经济结构。
当下,政策的红利激发了市场的活力,从2014年到2015年,我国新增市场主体超过400万,相当于每分钟新增8家企业。这样庞大的微观群体集中的数据将能反应海量的信息。但由于政府部门各管一段,数据不透明,这就对他们识别哪些是高精尖企业,哪些是技术尖端企业等带来壁垒。
屈庆超对记者表示,“一个企业的发展其实是多维的,我们通过建立模型,测算出北京有将近3万家高精尖企业,这些企业无论在经济总量、研发投入、专利授权量和纳税方面都占到了北京市总量的50%以上。后来我们又详细地进行了划分,发现海淀区和朝阳区就占了50%以上的高精尖企业,其中海淀区占比最高。由此,能够得出结论,未来在高精尖产业构建中,海淀区会有很大的经济增长潜力。这就是大数据的作用。”
大数据的价值就在于它的应用。屈庆超又举例说,北京有1.6万家企业获得了风险投资,只占北京企业总数的1%,但他们的品牌商标数量却占了北京企业品牌商标总数的8%;这1%的企业同时占了北京总体企业专利数总量的11%;产品著作权占了北京市企业总量的12%。我们现在为什么需要大数据?原因就在于过去的统计方法在社会的变革中很难适应当前的需要了,我们的政府在做决策的时候需要更加精准、更加科学的数据,需要大数据和大数据思维,来实现治理能力的现代化,以便精准助力供给侧改革。
可以说,下一轮的信息革命将是内容的互联、数据的互联。相应地,政府职能的转变和未来对宏观经济的调控与管理的手段都将会继续优化和改进。屈庆超认为,未来的数据将不仅仅是政府部门的数据,还需和社会、互联网、大数据企业共建数据,使所研究的区域更有系统性。
因此,屈庆超建议,政府部门应协同大数据企业一起,把数据共建、共享起来,建立北京市的企业大数据融合中心,服务首都经济的精准治理。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22