京公网安备 11010802034615号
经营许可证编号:京B2-20210330
2016年大数据专家值得期待的8件事
随着经济的复苏,全行业又掀起了雇佣潮,企业更偏向技能娴熟的应聘者。当然,这在聘用大数据专家时也一样奏效。数据质量总监、软件工程师、平台软件工程师、数据库工程师、大数据平台工程师,安全分析师,分析师和信息系统开发管理工作这些职位都需要精通大数据。很明显,大数据在接下来的发展的中将变成“更大的”数据。
在此列举八件2016年大数据专家值得期待的事:
1. 收入增长
如果你有大数据的专业技能,说不定你可以拿到124000美元年薪,其中不包括奖金及其它补贴哦。
2. 美国西海岸和东海岸的从业者有最好的就业市场
如果你住在新泽西州北部,或者纽约长岛,那么恭喜你!你处在“抢夺“东海岸工作的最好地理位置。而在加利福尼亚州,大数据工作是最吃香的。尤其在大湾区的弗里蒙特、桑尼维尔、奥克兰、三藩、圣克拉 拉和圣若泽。
3. 销售代表一职的需求量
“暴涨”这个词常拿来形容大数据解决方案的销量。但是像数据解决方案这样的产品,销售代表必须要由有丰富销售经验并深谙专业知识。所以销售代表一职的需求量在2015年暴涨后,在2016年还将持续。
4. 分析师一职的需求量
如果没有分析师,那么世界上积累的所有的大数据都没了价值。2015年安全分析师和管理分析师的需求率呈两位数增长。企业通过大数据利用消费者购买记录、手机app使用、客户关系管理记录和社交数据,来预测消费趋势和行为。这有利于市场改善他们的目标。
5. 预计大数据招聘中要招聘名人
很多公司已经发布了职位,包括IBM、思科、戴尔、Adobe系统公司(EMC),medeanalytics公司,埃森哲,CA Technologies Inc.,Splunk和亚马逊等。
6. 有额外技能的应聘者脱颖而出
大数据的工作需要其他技能,包括Python编程,统计,SQL,C,Java,Scala,Apache Hadoop,Linux,ApacheHadoop、机器学习、数据挖掘、统计和定量分析、NoSQL、开源技术、VMware(2015需求增加了近800%),超融合基础设施、结构化查询语言和数据仓库的知识。有工作技能的雇员在2016年的就业市场上更有价值,尤其是那些又精通专业知识又有创意的人。
7. 更多行业将用到大数据
多个行业将需要大数据专家,比如:制造业、金融保险业、零售业、信息技术,以及其他科学及技术服务业。专家们认为,像制造业这样的垂直市场的投资回报率是最高的。
8. 大数据是量化的主观事物
2016年会有越来越多的有关大数据的职位,因为大数据分析本身每年都在不断的更新。它不只是用来处理数据,或者解释人们暗号交流这样的非语言交际线索(比如声音、手势和表情)。大数据能够量化的信息越多,那么公布的执行和分析这些枚举的职位将越多。
对大数据的专业人士而言,经过了2015年接下来会变得更好。这罕见的一名员工,重要的技能,伴随着销售能力和编程知识可以抢了一份高薪的工作对于一个公司的高层很容易在2016。如果一名雇员有丰富的销售经验和深厚的专业知识,那么在2016年他将很容易在一家大公司获得高薪!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22