京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据重塑未来国际战略格局
大数据是新的石油,是本世纪最为珍贵的财产。大数据正在改变各国综合国力,重塑未来国际战略格局。2013年7月,国家主席习近平视察中国科学院时指出:“大数据是工业社会的‘自由’资源,谁掌握了数据,谁就掌握了主动权。”
大数据“安全的小船不能说翻就翻”
数据显示,2015年全球数据泄密的事故达1673起,涉及7亿多条数据记录。《Verizon 2015数据泄露调查报告》也显示,500强企业中,超过半数曾发生过数据泄露事件。更令人惊悚的是,60%的案例里,攻击者仅需要几分钟就可以得手。没有大数据安全,就好比一个国家没有安防一样,数据得不到保护,随时有可能受到破坏、攻击和篡改,极大地阻碍大数据产业的健康发展。可见,实现大数据产业可持续发展的前提是数据安全。
我们平时关心更多的数据“锁”或者“仓库管理员”是否可靠,其实更深层次的数据安全是数据库的安全。我国大数据库几十年一直用国际技术,说白了就是别人建了仓库,我们把数据装到别人的仓库里,按别人的规则、规范使用管理自己的数据,还用别人的仓库管理员(CPU)管理数据,什么都是别人的,除了数据来源是自己的。那么,我们要怎么用这些数据?用了干什么?用了能有什么结果?最终都是国际技术说了算。久而久之,我们国人已经自觉不自觉有个观念:国际技术保障数据安全,但这种安全真的安全吗?有一天国际技术不保障这种安全了,国际技术游戏规则变化了,国际技术被核心技术国完全掌控了,我们怎么办?
在大数据时代,甚至人们连吃什么、用什么都依赖数据分析时,我们依然不把最核心的数据安全放入改革制高点去讨论,这是危险的。所以无论什么性质的改革,核心还是硬技术实力的提升,只有核心基础技术实力提升了,用改革的办法推进核心技术结构调整,减少无效和低端供给,扩大有效和中高端有核心技术支撑的供给,增强供给结构对需求变化的适应性、灵活性、安全性,提高全要素生产率,才能使供给体系更好适应需求结构变化。
在大数据时代,大数据改变人类生活的说法一点儿也不夸张,但如果没有适时建立起大数据安全保障体系,大数据意味着存在安全隐患。对任何企业、机构、机关乃至于社会来讲,大数据分析都是最敏感的资产。大数据分析工作提供了精准、关键的竞争优势;另一方面,如果上述分析被别人掌握或落入别有用心之人手中,则会陷入巨大的风险中,这对企业来讲是如此,对机构来讲是如此,对国家更是如此。
数据库技术建设是国家战略安全无法回避的问题
现在国家间实力竞争,经济实力的竞争占据主要战场,整个社会商业数据分析就是这个主要战场的核心要素,而管理运用这些要素的大数据核心技术就是这些要素的保护者,卫士也就是数据仓库。我们应该在这些核心要素上痛下功夫,无论前端多少展现平台,这不重要,至少我们可以做到把自己的数据装在自己的仓库里,并自己制定规则,虽然数据库建设是所有大数据里最难啃的技术部分,但是也是最核心部分,对技术要求最高。
如果如何使用数据和管理数据,都是我们自己说了算,最好还把这个说了算的标准拿到国际上去,让国际上也使用我们的标准,这样我们就不但拥有了自己的技术,而且拥有了被国际社会认可的,被国际社会遵从的核心技术标准,那么这种核心竞争力应该是供给侧里“补短板”最有力的体现。我们国家在国际标准委大数据分会数据库标准提案的通过,意义也就不仅仅是在国际标准化组织里制定标准这么简单。
我们国家一直以来大数据就是依赖国际技术,因为技术是人家的、产品是人家造的,标准自然就是人家制定了,定了产品标准接下来就是定游戏规则,道理很明白,就是咱们技术上突破不了,就永远用别人的游戏规则玩游戏。所以这场革命势在必行,国家正在这个方面加大力度。大力支持供给侧改革中的“补短板”,其实也是由原来“中国制造”升级到“中国智造”的技术革命过程。在原来由国际上美、德一统天下的大数据核心技术领域,标上“中国智造”这一标志也应该是具有供给侧革命性意义的。
大数据正在成为经济社会发展新的驱动力,将涵盖经济社会发展各个领域,成为新的重要驱动力。大数据重新定义了各大国博弈的空间。在大数据时代,世界各国对数据的依赖快速上升,国家竞争焦点已经从资本、土地、人口、资源的争夺转向了对大数据的争夺。未来国家层面的竞争力将部分体现为一国拥有数据的规模、活性以及解释、运用的能力,数字主权将成为继边防、海防、空防之后另一个大国博弈的空间。
中国需要加快形成大数据国家战略,着力规划“大数据战略”中长期路线图与实施重点、目标、路径,统筹布局,加快大数据发展核心技术研发,推进大数据开放、共享以及安全方面的相关立法与标准制定,抢占新全球科技革命和产业革命战略机遇期,重构国家综合竞争优势已经迫在眉睫。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05