
大数据时代 家居行业如何营销
你是否想过,当你打开电脑,连上网络的那一刻,你的信息就已经开始暴露了。你的开机记录、IP地址、甚至常用软件等等信息都已经出现在各种所谓安全防护软件的后台数据中;而当你拥有一台手机,从开机到关机、你的位置、信号强度、忙闲状态等信息数据都将出现在运营商的网络里……
大数据迎来营销新时代
以你的手机为例,运营商可以通过对你手机的信息进行分析,便可以轻而易举知道你亲朋好友的联系方式,根据开机、关机时间知道你的作息习惯,你几时固定出现在某个地方,出行工具是什么等等。在一定意义上,只要运营商想知道,他都可以通过你的手机获得相应信息。
当讲到这时,很多人会愤怒。在信息化方便生活的同时,也在逐步瓦解自身“隐私”,个人习惯、爱好就这样暴露在了陌生人的眼前,更可怕的是你还不知道他们会用这些数据来做什么。但你改变不了这种现状,因为在信息化时代你不可能离开互联网和手机。
相比消费者的无奈,对于营销人员来说,大数据时代的来临,整合营销传播活动是可喜的,它将带来前所未有的机遇。在大数据时代,如果你有一个平台,你就可以轻而易举知道目标受众的“定位”信息,再加以收集、整合和分析,就可以得出相应的营销手段。所以,不得不说在大数据时代,营销人员的整合思维模式是相当重要的。
家具行业的大数据时代
如果把大数据局限于互联网和手机等行业,那就是一种思维的局限。对数据进行整合,得出相应的营销方法,放在任何行业都适用。
在家具行业,卖场是商家离消费者最近的地方,卖场每天也都将产生大量的数据。在一家家具店面,每天进入店面的人数是多少,以哪类人群为主,哪个时间段顾客量最大,哪类产品销售情况最理想,在导购员介绍时,顾客买与不买的原因又是什么等等。每一个消费行为的背后都是一次数据的产生,但更多店面没有对这部分数据进行详细的记录,更多的是笼统的概括。由于没有记录,数据不准确,当然也就不会到达整合数据这一环节。
相比而言,这种对于数据的收集、整合和分析的思维对于家具行业来说还比较欠缺。特别表现在产品设计上。设计师在设计产品前,往往是对整个大市场进行过完整而全面的调查了解的,知道怎样的设计才有可能获得市场的认可。但家具产品的设计概念一般都是“东拼西凑”,设计师们往往没有从消费者真正的需求出发去设计,而是收集、沿用成型产品的概念。
曾有位管理学家说过:“市场营销的目的是充分认识和了解消费者,让产品和服务满足消费者的需求,不用推销消费者就会主动购买。”但反观家具业的营销,只停留在打价格战等的初始阶段,更多想着怎么卖出产品,而忘了细想这是不是顾客想要的产品。
大数据时代,家具人需要整合思维,如何做好整合,首先一步就是如何获得数据。除了少数的家具大企业已经把触手伸向了电商,目前家具行业跟消费者最直接的交流主要还是体现在卖场的交易过程中,在卖场的交易过程中如果你学会了获得数据,整合数据,相信你就比别人先行了一步。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23