
大数据能帮助民营银行做什么
半年前,SAS(赛仕软件)北亚区整合营销管理业务咨询高级总监许慧章才从新加坡回到中国。走访国内一些银行后,她对国内围绕互联网金融及大数据给传统金融业所带来的变革以及创新思维的讨论感到惊讶。
SAS是全球最知名的商业分析软件与服务商之一,它在中国的客户覆盖了金融、电信、制造零售以及政府部门。具体来说,除去传统银行和保险机构之外,连沪深交易所、中国海关和香港统计处等都在使用SAS提供的软件和服务。
在中国,它们的客户群有望进一步扩大,譬如民营银行之一、由均瑶集团作为主要发起股东的华瑞银行。
国内第一批民营银行几乎都将自身的业务锁定在小微企业和个人群体上。在它们之前,已经有P2P公司和各类互联网金融机构打着大数据的概念各显神通。的确,互联网、尤其是移动互联网的发展大大拓展了外界机构所能获得的用户数据的数量和形式。但国内的法律与信用环境发展未臻完善,很多消费者是通过提供虚假和片面的信息来“保护”自己的隐私,当然也有人群是恶意欺骗。
“与线上数据相比,其实银行手中掌握的信息才是更全面和准确的。”许慧章告诉《中国企业家》。因为银行出于监管,法律与保护客户利益的需要,保存客户大量的交易流水,并通过客户对本行持有产品的使用,信贷情况,投资理财表现对客户有较好,多方位的了解。另一个能够掌握真实流水数据的新兴企业是电商,如阿里集团,淘宝平台多年累积的数据和经验,让他们能够掌握从商户到用户整个交易过程的有效且持续的数据信息。其它单纯的依靠互联网信息去构建一个比较完整的、作为机构判断和决策的公司显然要冒非常大的风险,这也是为什么P2P公司既不能有效解决融资成本,又不断曝出违规和跑路事件的原因。
事实上,大数据在国内的发展其实只是处在初始阶段,以前不可搜集的信息变成“可搜集”、且搜集的成本大大降低的阶段,还不能做到完善而真实、甚至能够作为一套可供独立分析数据模型的程度。所以,必须要去寻找第三方、第四方数据去进行补充和匹配,才能够进一步判断这些大数据的准确性。
SAS和其它公司都在寻求这方面技术的突破。语音信息成为SAS在技术上的一个突破点。他们将客户打进来的通话记录转变成结构性或是非结构性数据,再配以情感分析等,既缩短了问题的侦测时间,又节约了售后成本。SAS曾将这方面的应用提供给联想集团,“原来质量问题已经不再仅仅是PC机能否正常工作这样的范畴,它还包括客户如何清楚了解如何使用产品、能够快速获得公司的帮助、外部软件如何与联想的硬件兼容等等方面。”许慧章告诉本刊,“这意味着对质量这一概念的重新定义。”
现在,这一技术也有可能用于民营银行上。民营银行从资金规模和人员数量等方面来看,走的都是轻资产路线。”许慧章告诉本刊。这意味着它们不会铺设太多的网点,业务也会更集中在线上。而且,与背靠互联网巨头的网商银行和微众银行相比,一些民营银行在渠道方面是处于相对弱势的地位的。所以,它更需要能够提供精准分析进行业务定位的工具和服务。因此,研究如何把客户打进来的咨询和投诉电话转变成有效数据,再配以其它分析手段,就将能够更好的帮助它们进行业务和服务定位。
大数据的整合与打通是未来的一个重要趋势。在业务上,民营银行会更多的依靠中间业务和产品创新,赚取手续和服务费用将成为其主要盈利模式。这会使得线上交易频次更高、业务种类更丰富,不同业务乃至机构之间的交叉也会更多。综合来看,各机构手中客户数量会迅速不断扩大,单纯依靠员工进行维护、管理和营销,其运营成本对于企业来说已经产生非常大的压力。出于价值创新,精准营销和降低成本的考量,更多的机构除去需要以数据分析为核心、以客户为中心的经营理念,还希望能够打通线上和线下,以及实现不同业务之间交叉销售的商用解决方案。“譬如酒店业可以依托自己手中的线上和线下数据向旅游业延伸,或与商户,航空公司展开合作。”许慧章说。但这还只是战术性的——许认为,金融集团取得银行、保险、信托、券商等全牌照是大势所趋,企业应该从中制定战略性的发展策略。以客户需求为中心,全面提升企业的核心竞争优势。
一个案例来自于平安集团。几个月前,平安宣布将直通贷款业务、陆金所辖下的P2P小额信用贷款, 以及平安信用保证保险事业部整合在一起,有机结合线上和线下的已有能力及开拓新契机,实现优势互补,利用大数据和数据分析为用户提供更安全和贴心的一站式服务。SAS为其提供相关服务,利用大数据来帮助平安实现业务上的整合直通。
当然,对于民营银行,在积极开拓业务,吸收新客源的同时,最关键、最不可缺少的考量就是风控和反欺诈管理。许慧章认为,由于目前中国机构监管和征信体系建设都有待完善,特别是互联网金融,对客户资金安全管理有许多“短板“,具系统性风险,因此从规模和模式上民营银行要增加抗风险的能力,不仅要依托互联网和大数据技术,还有通过其他信息、如线下相关的征信信息互补予以加强。所以,必须严格把好风控和反欺诈两关。但这已经不止是简单的技术问题,还需要监管法律和安全管理等方面齐头并进。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18