
Excel图表中的一些专业术语
一个Excel图表中包含着很多图表元素,这些图表元素都有自己的名称和专业术语,只有知道了这些术语,才可以更助于我们编辑加工图表。这节教程有点干,就叫干货吧,没有一张图表,都是理论性的内容,下面就是Excel图表中的一些专业术语。
1、图表区
图表区表示整个图表,包含所有数据系列、坐标轴、标题、图例、数据表等。
2、绘图区
绘图区是图表的一部分,由垂直坐标轴和水平坐标轴及其负轴包围的区域。
3、数据系列
数据系列是一组数据点,如图表中的一整行或者一整列。例如,在绘制折线图时,每条折线就是一个数据系列。
图表中的每个数据系列具有唯一的颜色或图案,并且在图表的图例中表示。可以在图表中绘制一个或多个数据系列。但饼图只有一个数据系列。
Excel会自动将工作表数据中的行或列标题作为系列名称使用。系列名称会出现在图表的图例中。系列名称也可以由用户自己定义。如果在绘制图表时,既没有行或列标题作为系列名称使用,也没有由用户自己定义的系列名称,那么Excel会自动将各个数据系列的名称命名为“系列1”、“系列2”、“系列3”等。
4、数据点
数据点就是工作表单元格中的值,在图表中显示为条形、线形、柱形、扇形或其他形状。例如,柱形图中的每个柱体就是一个数据点,饼图中的每块饼就是一个数据点,散点图中的每个点就是—个数据点。
5、数据标志
数据标志是一个数据标签,是指派给单个数据点的数值或名称。它在图表上的显示是可选的。数据标签可以包含很多项目。如“系列名称”、“类别名称”、“值”、“百分比”和“气泡尺寸”。
这里,“系列名称”就是每个系列的名称,既可由Excel自动将工作表数据中的行或列标题作为系列名称,也可以由用户自己定义,或者采用默认的名称“系列1”、“系列2”、“系列3”等。
“类别名称”是指分类轴上的单个标记,也称为刻度线标记,如“1月”、“2月”、“3月”等。
“值”就是每个数据点具体的数值。
“百分比”是指每个数据点具体数值占该系列所有数据点数值总和的百分比。
“气泡尺寸”是指在绘制气泡图时,第3个系列的数值大小。
6、坐标轴
一般情况下,图表有两个用于对数据进行分类和度量的坐标轴:分类轴(或/和次分类轴)和数值轴(或/和次数值轴)。三维图表有第三个轴。饼图或圆环图没有坐标轴。
某些组合图表一般还会有次分类轴和次数值轴。
次数值轴出现在主数值轴绘图区的反面,它在绘制混合类型的数据(如数量和价格),需要各种不同刻度时使用。一般情况下,主数值轴在绘图区的左侧,而次数值轴在绘图区的右侧(对于条形图,主数值轴在绘图区的下部,而次数值轴在绘图区的上部)。
次分类轴出现在主分类轴绘图区的反面。一般情况下,主分类轴在绘图区的底部,而次分类轴在绘图区的上部。
分类轴就是通常所说的X轴,数值轴就是通常所说的Y轴。
坐标轴包括坐标刻度线、刻度线标签和轴标题等。刻度线是类似于直尺分隔线的短度量线,与坐标轴相交。刻度线标签用于标识坐标轴的分类或值。轴标题是用于对坐标轴进行说明的文字。
7、图表标题
图表标题用于对图表的功能进行说明,通常出现在图表区的顶端中心处。
8、网格线
网格线是添加到图表中易于查看和计算数据的线条,是坐标轴上刻度线的延伸,并穿过绘图区。有了网格线,就很容易回到坐标轴进行参照。
根据图表类型的不同,有的图表会自动显示数值(Y)轴的主要网格线。
9、图例
图例是一个方框,用于标识为图表中每个数据系列或分类指定的图案或颜色。默认情况下,图例放在图表的右侧。
10、分类间距和重叠比例
分类间距用于控制柱形簇或条形簇之间的间距。分类间距的值越大,数据标记簇之间的间距就越大,相应的柱形簇或条形簇就越细。
重叠比例用于控制柱形簇或条形簇内数据点的重叠。重叠比例越大,数据标记簇之间的重叠就越厉害。
11、趋势线
趋势线以图形方式说明数据系列的变化趋势。它们常用于绘制预报图表,这个预报过程也称为回归分析。
支持趋势线的图表类型有非堆积型二维面积图、条形图、柱形图、折线图、股价图、气泡图和散点图;不能向三维图表、堆积型图表、雷达图、饼图或圆环图的数据系列中添加趋势线。如果更改了图表或数据系列使之不再支持相关的趋势线,例如将图表类型更改为三维图表,或者更改了数据透视图或相关联的数据透视表,则原有的趋势线将丢失。
12、误差线
误差线以图形形式显示了与数据系列中每个数据标志相关的可能误差量。例如。可以在科学实验结果中显示±5%的可能误差量。
支持误差线的图表有面积图、条形图、柱形图、折线图、XY(散点)图和气泡图。对于散点图和气泡图,可单独显示X值或Y值的误差线,也可同时显示两者的误差线。
只有学会了解了Excel图表中的一些专业术语,我们才可以制作出来更加专业的、美观的Excel图表,这样做出来的图表不仅专业,更加吸引客户的眼球,更好的展示了公司的形象。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15