京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据技术对传统媒体转型升级的三大价值
网络和数字技术的快速发展,带来媒体格局的深刻变革。数字新兴媒体发展之快、覆盖之广超乎想象,“数字化”正以旋风般的速度带给传统媒体行业转型升级三大价值。
一、重建用户连接价值,传统媒体或可实现“弯道超车”
传统媒体陷入困境很大一部分原因是与用户连接失效。近几年来,在互联网媒体对传统媒体的猛烈冲击下,传统媒体的受众大量流失,导致入口价值大大贬值,广告收入大幅度下滑,专业人才流失。因此传统媒体的核心竞争力被大大减弱,并陷入恶性循环。
据CNNIC数据显示,截至2015年12月,中国网民规模达6.88亿,全年共计新增网民3951万人。互联网普及率为50.3%,较2014年底提升了2.4个百分点。中国手机网民规模达6.20亿,较2014年底增加6303万人。网民中使用手机上网人群占比由2014年的85.8%提升至90.1%。中国网民通过台式电脑和笔记本电脑接入互联网的比例分别为67.6%和38.7%;手机上网使用率为90.1%,较2014年底提高4.3个百分点;平板电脑上网使用率为31.5%;电视上网使用率为17.9%。随着4G的大规模推广和应用,未来的手机网民规模必将迅猛增加。而传统媒体要实现自身的真正转型,就必须以用户为中心重建用户连接,进而重构自身的内容输出模式和创新盈利模式。而要重建用户连接,既需要通过自身的数字化尽可能地抓取用户信息,又需要创新媒介内容和形式激发受众主动地阅读及分享,不断拉近媒体和用户之间的距离。
二、传统媒体行业将继续通过跨界融合实现转型
近几年随着互联网技术的快速发展,给传统媒体带来了前所未有的机遇与挑战,转型融合成为传统媒体未来发展的必然趋势。搭乘“互联网+”的快车,深入转型、深层融合,在这个属于信息产业的行业不断上演:
在国外,早在2013年全球电商平台亚马逊创始人贝索斯个人以2.5亿美元收购受巨亏影响的美国报纸《华盛顿邮报》,被收购后的《华盛顿邮报》一直扩展数字业务,创造新的收入来源;在国内,阿里巴巴在2015年以12亿元入股上海文广旗下第一财经传媒有限公司,阿里巴巴和上海文广将在新媒体和金融信息服务领域实现战略合作;同样在2015年,杭州报业集团旗下的上市公司华媒控股与领先的“互联网+”解决方案提供商泰一指尚签署《战略合作框架协议》,双方以互联网核心技术为驱动,优化整合资源,共同打造全新的互联网媒体平台,构建代表未来发展趋势的产业模块。由此可见,在“互联网+”的大时代背景下,传统媒体的数字化是大势所趋。
跨界合作盛行,全媒体融合继续演进互联网和传统媒介,内容和营销的边界也逐步模糊。通过信息技术对传统产业的整合,特别是数据技术与传统产业的深度融合,形成了新的内容生产方式,实现了传统媒体产业自身的数字化升级,也彻底创新了传统媒体的作业模式。
三、大数据技术是提升传统媒体行业竞争力的关键要素
伴随着移动互联网的快速成长,人们开始以电脑、智能手机、PAD、互联网电视获取信息,终端的私人化带来媒体选择的个性化,用报纸版面、电视节目单强制信息渠道的方式越来越弱,同时新的媒体形式不断出现并争夺受众的阅读习惯。传统媒体在面临这种困境下,开始全力布局移动客户端:门户网站wap版、微信公众平台、微博粉丝平台、移动APP等工具层出不穷。信息传播从单一的文字及画面演变为文字、视频、音频、互动、电商导购等多种技术形式互动展示的新方向,也更加受到受众的青睐。在传统媒体转型升级的路径中,大数据技术作为当代的数据资源的重要支撑,对传统媒体的转型与发展起着重要作用。
大数据技术给传媒带来的最大的思维变革,其一,在于能够通过数据挖掘等方式,实现对读者和受众个性化需求的准确定位和掌握;其二,在于能够通过技术手段低成本地实现信息和受众个性化、定制化需求之间的智能化匹配。以Facebook为例,Facebook借助大数据技术收集社交平台上的热点信息,通过不间断的监控,采集最受用户关注、转发量最大的热点信息,加工形成新闻产品或原生广告向用户推送。
数据时代,传统媒体的运作方式正在发生深刻变革。“内容为王,大数据技术为支撑”是传统媒体转型的有效途径。2016年,将有更多传统媒体行业巨头进军大数据产业。数据资产已经成为物质资产和人力资源同样重要的资产,也是生产和运营的重要环节,大数据技术的使用将成为未来提升传统媒体行业竞争力的关键要素。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26