
大数据挖不到的是情怀
某购票平台日前发布了一个名为“大数据时代的电影消费洞察”的报告。不仅有常见的观影习惯、观影人群的统计,还发布了更大的野心,比如将利用购票数据对电影拍摄和宣传发行提出建议,有助于选择更卖座更有票房潜力的电影题材。
这是个顺理成章的野心。看电影不像买水果,你可以先看后买,甚至先尝后买。看电影就像一次小小的猜谜或者冒险,好看还是难看,喜欢还是厌烦,盖头揭开之后才会知道。此前你看到的宣传,无一例外的是王婆卖瓜自卖自夸,谁见过批评自己的广告?其实,卖家也悬着一颗心呢,上一部大卖下一部冷场的遭遇并不是个案,片商们前赴后继地交学费还是找不到一劳永逸的秘诀。
大数据的优越感此时显露无遗。观众喜欢小清新还是重口味、哪个明星更有票房号召力、哪些题材有话题性、哪些炒作效果好、可能的票房是多少,进行数据分析就可以得到答案。然后,精准地投其所好、按需生产,自然容易产销对路,投资风险也会随之降低。有点像打牌,虽然不能清楚地看见对手的每一张牌,但掌握了对手的偏好和习惯,胜算就大得多了。
大数据真是个靠谱的好东西。可惜,它碰到的是电影这个不怎么靠谱的特殊品。电影生产的,不是实实在在的水果,而是一个银幕上的梦。观众买到的,是很快就会化作回忆的几个小时的体验。给观众一个什么样的梦,就是业界良心了。此时,大数据就没那么神勇了。
电影产业链的每个环节都需要数据支持,这已经是个不争的事实。大众喜闻乐见,当然是个好理由,却不能视为唯一的标准。一味看重市场强调票房,就容易用市场逻辑取代艺术思维,导致天平的失衡。底层的努力奋斗哪有上层的浮华时尚来得好看,缜密深沉的剧情哪有简单狗血来得痛快?没有了艺术思维,最吸引人的恐怕就是直接的感官刺激了。大众此时此地的喜好,多半是即食性的消费行为,选择观众最习惯最好消化的喂食,这样的影片除了提供酸爽的快感,几乎没有任何营养可言。比如拍摄速度奇快票房奇高的《小时代》和《何以笙箫默》,乍看起来很是养眼,似乎也无辜无害,粉丝和明星之间一个愿打一个愿挨,搞不好还是两厢情愿皆大欢喜,关你啥事?如果粉丝们都甘之如饴地接受在物质奢华面前走形的友谊、爱情,如果观众们都把苍白矫情的粗制滥造当做格调和情趣,那就真该问一下业界良心在哪里了。这些伴随着粉丝成长的电影,会影响着一代人的价值观和文化品位。作为电影中的一个类型,它们有存在的理由,却不该是市场的垄断者。在它们之外,还有更广阔更深沉的生活,如果因为主流观影人群的陌生或排斥而不能进入影院,就是不小的遗憾了。
能够传诸后世被奉为经典的东西,往往是大数据的挖掘机难以抵达的角度和深度。大数据会推出《泰囧》、《心花路放》,但不会对《一九四二》感兴趣,更不可能青睐《归来》的故事。一个《小时代》大行其道的时代,不会是电影的大时代。
一个时代的电影,总带着一个时代的清晰烙印,也必然带着一个民族的文化气息。电影从来不单纯是个娱乐产品,它还给人们以启迪和教育。电影的教育意义,在电影的故事和情节中,更在故事和情节背后的人文关怀中。在电影背后是怎样的一双眼睛,是进步的还是保守的?用怎样的价值观去看待当前的时代和远去的历史,用怎样的视角去观察和表现不同阶层的人群,都会通过观影经历潜移默化地传达给观众。这种细腻微妙的文化情怀,这种主创人员创造出的独特风格,这种经由火候和经验文火炖出来的分寸感,是佳片的必备因素,却是大数据无能为力的。在呼唤人文情怀、盼望精品力作的今天,即使暂时没有精品批量出现,至少也该旗帜鲜明地亮出精品思维和精品追求
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15