
大数据重塑未来金融监管方式
回顾金融创新发展的历史,每一次金融的历史变革都与先进的科学技术紧密结合,因此当金融发展到互联网时代,也必将发生新的金融变革。
建立互联网金融治理体系,应该成为我国金融治理体系和金融治理能力建设的重要内容,大力发展互联网金融,以互联网金融治理推进中国金融治理体系和治理能力现代化,是金融治理现代化的必由之路。
世界经济论坛创始人、《第四次工业革命》作者施瓦布认为,建立在数字革命基础上的第四次工业已经到来,这是一场系统性的深度变革,而用大数据进行决策是这些变革之一。
在大数据、云计算等技术变革下,我国的金融行业将出现哪些变化?金融监管面临哪些新挑战?如何利用大数据进行智能决策?就这些问题,《经济参考报》记者专访了北京市金融工作局党组书记霍学文。
大数据时代到来
凯文·凯利(Kevin Kelly)被誉为互联网经济的预言家,他精准预测Web2.0时代的到来和网络经济的运行规律。凯文·凯利预言,未来,大数据、云计算、移动通讯三者相结合的技术进步将激发大数据、深度学习、语音智能、监控设备、3D打印、人造智能、P2P、虚拟货币等方面的技术突变,而这些正在成为现实。
霍学文认为,人类将迎来大数据时代。现在一年的信息量已经超过自人类文明开始时积累的所有信息量之和。未来信息量的扩张是爆炸性的,将达到我们无法控制的程度。未来的生活都将是可量化的,每个个体自身也将贴上数字化的标签。
大数据时代的信息是海量的,结构化数据与非结构化数据并行。如何从纷繁复杂的数据当中提炼出有效的数据,并且用适合的方式展示出来,成为各界必须认真思考的问题。“当下我们大部分的分析工作都是基于传统的饼状图、柱状图等二维数据模型进行组建的,而在大数据时代,二维的数据模型只有3个维度进行管理和判断,完全满足不了大数据时代需要多维度、复杂关系的数据模型的需求。”霍学文对《经济参考报》记者表示。
“以前我们做研究做经济决策,最担心的是没有数据作为依据,不能正确地认清事物的发展阶段。而现在是海量数据充斥在我们的世界,在机器智能尚未完成的时候,需要人机交互。数据可视化可以帮助人通过视觉直接感知机器语言与图形图像。可以带来更多的直观的数据关联价值。”霍学文说。
但是,信息孤岛问题始终是大数据发挥作用的主要障碍之一。霍学文认为,为解决这一问题需要数据开放。从数据的开放、共享和交互,到价值提取能力的开放,到基础处理和分析平台的开放,让数据如同血液在数据社会的躯体中长流,滋润数据经济,让开放数据的思维成为常态。
未来,大数据的规模会越来越大,大数据经济价值会驱动大数据产业链加速形成。从数据采集、数据存储、数据处理,到数据分析、数据交易、数据应用,围绕着这些分工环节将会产生一批大数据生产商、运营商、服务商。
“数据成为资产、行业垂直整合、平台泛金融化成为商业发展主流趋势,行业产业链条加深加长,促使商业创新模式层出不穷。互联网创造出新的商业模式,塑造新的经济形态,创造新的经济生态空间,加大生产可能性边界,降低生产成本和融资成本,互联网基因已经融入到社会运行的底层物质技术结构之中。”霍学文表示,回顾金融创新发展的历史,每一次金融的历史变革都与先进的科学技术紧密结合,因此当金融发展到互联网时代,也必将发生新的金融变革。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29