京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据重塑未来金融监管方式
回顾金融创新发展的历史,每一次金融的历史变革都与先进的科学技术紧密结合,因此当金融发展到互联网时代,也必将发生新的金融变革。
建立互联网金融治理体系,应该成为我国金融治理体系和金融治理能力建设的重要内容,大力发展互联网金融,以互联网金融治理推进中国金融治理体系和治理能力现代化,是金融治理现代化的必由之路。
世界经济论坛创始人、《第四次工业革命》作者施瓦布认为,建立在数字革命基础上的第四次工业已经到来,这是一场系统性的深度变革,而用大数据进行决策是这些变革之一。
在大数据、云计算等技术变革下,我国的金融行业将出现哪些变化?金融监管面临哪些新挑战?如何利用大数据进行智能决策?就这些问题,《经济参考报》记者专访了北京市金融工作局党组书记霍学文。
大数据时代到来
凯文·凯利(Kevin Kelly)被誉为互联网经济的预言家,他精准预测Web2.0时代的到来和网络经济的运行规律。凯文·凯利预言,未来,大数据、云计算、移动通讯三者相结合的技术进步将激发大数据、深度学习、语音智能、监控设备、3D打印、人造智能、P2P、虚拟货币等方面的技术突变,而这些正在成为现实。
霍学文认为,人类将迎来大数据时代。现在一年的信息量已经超过自人类文明开始时积累的所有信息量之和。未来信息量的扩张是爆炸性的,将达到我们无法控制的程度。未来的生活都将是可量化的,每个个体自身也将贴上数字化的标签。
大数据时代的信息是海量的,结构化数据与非结构化数据并行。如何从纷繁复杂的数据当中提炼出有效的数据,并且用适合的方式展示出来,成为各界必须认真思考的问题。“当下我们大部分的分析工作都是基于传统的饼状图、柱状图等二维数据模型进行组建的,而在大数据时代,二维的数据模型只有3个维度进行管理和判断,完全满足不了大数据时代需要多维度、复杂关系的数据模型的需求。”霍学文对《经济参考报》记者表示。
“以前我们做研究做经济决策,最担心的是没有数据作为依据,不能正确地认清事物的发展阶段。而现在是海量数据充斥在我们的世界,在机器智能尚未完成的时候,需要人机交互。数据可视化可以帮助人通过视觉直接感知机器语言与图形图像。可以带来更多的直观的数据关联价值。”霍学文说。
但是,信息孤岛问题始终是大数据发挥作用的主要障碍之一。霍学文认为,为解决这一问题需要数据开放。从数据的开放、共享和交互,到价值提取能力的开放,到基础处理和分析平台的开放,让数据如同血液在数据社会的躯体中长流,滋润数据经济,让开放数据的思维成为常态。
未来,大数据的规模会越来越大,大数据经济价值会驱动大数据产业链加速形成。从数据采集、数据存储、数据处理,到数据分析、数据交易、数据应用,围绕着这些分工环节将会产生一批大数据生产商、运营商、服务商。
“数据成为资产、行业垂直整合、平台泛金融化成为商业发展主流趋势,行业产业链条加深加长,促使商业创新模式层出不穷。互联网创造出新的商业模式,塑造新的经济形态,创造新的经济生态空间,加大生产可能性边界,降低生产成本和融资成本,互联网基因已经融入到社会运行的底层物质技术结构之中。”霍学文表示,回顾金融创新发展的历史,每一次金融的历史变革都与先进的科学技术紧密结合,因此当金融发展到互联网时代,也必将发生新的金融变革。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08