
利用Microsoft Query工具可快速汇总多个工作表
我们在使用Excel时,所谓多个有关联的Excel工作表数据的汇总计算,就是说每个工作表保存有不同的数据信息,但是这些工作表的数据至少有一列数据是彼此相关联的。对多个有关联的工作表数据进行汇总计算,就是要将这些数据信息综合到一张工作表上,利用Microsoft Query工具可快速汇总多个工作表。
图1所示为一个员工信息及工资数据分别保存在3个工作表中的示例工作簿。其中,工作表“部门情况”保存员工的工号及其所属部门:工作表“明细工资”保存员工的工号及其工资明细数据;工作表“个税”保存员工的编号及其个人所得税数据。这3个工作表都有一个“工号”列数据。现在要求按部门将这3个工作表数据汇总到一张工作表上。以便做进一步的分析,如图2所示。
图1
图2
这个问题有很多方法可以解决,例如使用VLOOKUP函数等。但最简便且效率更高的方法是利用Microsoft Query工具。下面介绍利用Microsoft Query工具快速汇总多个有关联工作表的具体方法和步骤。
1、单击“数据”选项卡,在“获取外部数据”功能组中单击“自其他来源”按钮,选择“来自Microsoft Query”命令,如图3所示。
图3
2、此时会打开“选取数据源”对话框,如图4所示。
图4
3、底部的“使用‘查询向导’创建/编辑查询”复选框,单击“确定”按钮,打开“选择工作簿”对话框,从保存有当前工作簿文件的文件夹中选择该文件,如图5所示。
图5
4、单击“确定”按钮。
如果是第一次使用Microsoft Query工具,在单击“确定”按钮后会弹出一个警告信息框,
如图6所示。单击“确定”按钮,打开“查询向导一选择列”对话框,如图7所示。
图6
图7
单击“选项”按钮,打开“表选项”对话框,选择“系统表”复选框,如图8所示。
图8
单击“确定”按钮,返回到“查询向导-选择列”对话框,在“可用的表和列”列表中可用看到各个工作表的名称列表,如图9所示。
图9
5、从左边“可用的表和列”列表中分别选择工作表“部门情况”、“明细工资”和“个税”,单击>按钮,将这3个工作表的所有字段添加到右侧的“查询结果中的列”列表框中,如图10所示。
图10
6、由于3个工作表中都有一列“工号”,因此“查询结果中的列”列表框中出现了3个“工号”列,选择多余的两个“工号”例,单击<安钮,将其移出“查询结果中的列”列表框,如图11所示。
图11
7、单击“下一步”按钮,系统会弹出一个警告信息框,告知用户“查询向导”无法继续,需要在Microsoft Query窗口中拖动字段进行查询,如图12所示。
图12
8、单击“确定”按钮,打开Microsoft Query窗口,其中包含上下两部分,上方有3个小窗口,分别显示3个工作表的字段列表,下方是3个工作表中全部数据的列表,如图13所示。
图13
9、由于3个工作表中的记录是以员工编号相关联的,因此将某个工作表字段列表窗口中的字段“工号”拖到其他工作表字段列表窗口中的字段“工号”上,就将这3个工作表通过字段“工号”建立了连接,Microsoft Query窗口下方的查询结果列表中就显示出所有满足条件的记录,如图14所示。
图14
10、选择Microsoft Query窗口中的“文件”-“将数据返回Microsoft Office Excel”命令,如图15所示,系统就会打开“导入数据”对话框,如图16所示。
图15
图16
11、在“导入数据”对话框中选择“表”单选按钮和“新建工作表”单选按钮,单击“确定”按钮,即可得到图2所示的汇总数据。
利用Microsoft Query工具可快速汇总多个工作表,这种查询汇总得到的数据与每个分表是动态连接的。当某个分表的数据发生变化后,在数据区域内选择右键快捷菜单中的“刷新数据”命令,即可对汇总数据进行刷新。如果想要对这些分表数据进行汇总后再利用数据透视表进行更多分析,可以以该汇总数据为基础制作数据透视表。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01