京公网安备 11010802034615号
经营许可证编号:京B2-20210330
利用Microsoft Query工具可快速汇总多个工作表
我们在使用Excel时,所谓多个有关联的Excel工作表数据的汇总计算,就是说每个工作表保存有不同的数据信息,但是这些工作表的数据至少有一列数据是彼此相关联的。对多个有关联的工作表数据进行汇总计算,就是要将这些数据信息综合到一张工作表上,利用Microsoft Query工具可快速汇总多个工作表。
图1所示为一个员工信息及工资数据分别保存在3个工作表中的示例工作簿。其中,工作表“部门情况”保存员工的工号及其所属部门:工作表“明细工资”保存员工的工号及其工资明细数据;工作表“个税”保存员工的编号及其个人所得税数据。这3个工作表都有一个“工号”列数据。现在要求按部门将这3个工作表数据汇总到一张工作表上。以便做进一步的分析,如图2所示。
图1
图2
这个问题有很多方法可以解决,例如使用VLOOKUP函数等。但最简便且效率更高的方法是利用Microsoft Query工具。下面介绍利用Microsoft Query工具快速汇总多个有关联工作表的具体方法和步骤。
1、单击“数据”选项卡,在“获取外部数据”功能组中单击“自其他来源”按钮,选择“来自Microsoft Query”命令,如图3所示。
图3
2、此时会打开“选取数据源”对话框,如图4所示。
图4
3、底部的“使用‘查询向导’创建/编辑查询”复选框,单击“确定”按钮,打开“选择工作簿”对话框,从保存有当前工作簿文件的文件夹中选择该文件,如图5所示。
图5
4、单击“确定”按钮。
如果是第一次使用Microsoft Query工具,在单击“确定”按钮后会弹出一个警告信息框,
如图6所示。单击“确定”按钮,打开“查询向导一选择列”对话框,如图7所示。
图6
图7
单击“选项”按钮,打开“表选项”对话框,选择“系统表”复选框,如图8所示。
图8
单击“确定”按钮,返回到“查询向导-选择列”对话框,在“可用的表和列”列表中可用看到各个工作表的名称列表,如图9所示。
图9
5、从左边“可用的表和列”列表中分别选择工作表“部门情况”、“明细工资”和“个税”,单击>按钮,将这3个工作表的所有字段添加到右侧的“查询结果中的列”列表框中,如图10所示。
图10
6、由于3个工作表中都有一列“工号”,因此“查询结果中的列”列表框中出现了3个“工号”列,选择多余的两个“工号”例,单击<安钮,将其移出“查询结果中的列”列表框,如图11所示。
图11
7、单击“下一步”按钮,系统会弹出一个警告信息框,告知用户“查询向导”无法继续,需要在Microsoft Query窗口中拖动字段进行查询,如图12所示。
图12
8、单击“确定”按钮,打开Microsoft Query窗口,其中包含上下两部分,上方有3个小窗口,分别显示3个工作表的字段列表,下方是3个工作表中全部数据的列表,如图13所示。
图13
9、由于3个工作表中的记录是以员工编号相关联的,因此将某个工作表字段列表窗口中的字段“工号”拖到其他工作表字段列表窗口中的字段“工号”上,就将这3个工作表通过字段“工号”建立了连接,Microsoft Query窗口下方的查询结果列表中就显示出所有满足条件的记录,如图14所示。
图14
10、选择Microsoft Query窗口中的“文件”-“将数据返回Microsoft Office Excel”命令,如图15所示,系统就会打开“导入数据”对话框,如图16所示。
图15
图16
11、在“导入数据”对话框中选择“表”单选按钮和“新建工作表”单选按钮,单击“确定”按钮,即可得到图2所示的汇总数据。
利用Microsoft Query工具可快速汇总多个工作表,这种查询汇总得到的数据与每个分表是动态连接的。当某个分表的数据发生变化后,在数据区域内选择右键快捷菜单中的“刷新数据”命令,即可对汇总数据进行刷新。如果想要对这些分表数据进行汇总后再利用数据透视表进行更多分析,可以以该汇总数据为基础制作数据透视表。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16