
零售商的“大数据”战略
随着大数据时代的来临,大数据应用处理正借用巨大商业价值走向互联网营销的大舞台。越来越多的企业开始从海量的数据中挖掘有效的信息,研究用户消费习惯,利用挖掘出来的有效数据进行用户行为分析,从而做到精准营销。
大数据打造京东智慧物流
京东的物流体系目前数据量非常大,京东现在每天产生的数据基本上都是上亿级的。作为支撑京东的物流系统,京东在大数据方面做了很多工作,对于实时数据、离线数据,都有一整套的解决方案,做到线上的生产系统和整个数据分析系统的分离。
大数据在配送站点设计上的使用,京东业务每年快速增长,已经开始运用大数据来规划如何建站的问题。通过数据集合的方法,找出订单很密集的点,从而来考虑是否需要增加配送站的覆盖,大数据能辅助决策哪些地方建配送站能达到效率的最优。
一直以技术创新推动企业创新的京东集团,在大数据的驱动下进行着令人瞩目的企业变革之路,未来通过技术的不断开放,京东将与更多合作伙伴共享技术创新,实现合作共赢。
趣多多玩转愚人节
趣多多在愚人节的大数据营销活动,创造了6亿多次页面浏览并影响到近1,500万独立用户,品牌被提及的次数增长了270%。可以说这是一次成功的品牌营销活动,广泛的发声,让趣多多的用户关注度得到了一次巨大的提升,诙谐幽默的品牌基因更加深入的进入到用户的意识层面。
趣多多到底是如何利用大数据营销做到这些的呢?
1、利用社交大数据的敏锐洞察,趣多多精准锁定了以18-30岁的年轻人为主流消费群体。
2、聚焦于他们乐于并习惯使用的主流社交和网络平台,如新浪微博、腾讯微博、百度大搜、社交移动APP以及优酷视频等。
3、在愚人节当日进行全天集中性投放,围绕品牌的口号展开话题,全面贯彻实时且广泛的与用户沟通机制并深度渗透,使品牌在最佳时机得到有效曝光,也令目标消费者在当天能得到有趣和幽默的体验。
4、趣多多更是联合80后脱口秀,将趣多多以“有趣”为主题的品牌定位进一步加以强化。多支短片在趣多多官方微博亮相,主持人王自健和网友的互动也在第一时间和活动主题相呼应。
互联网及社交媒体的发展让人们在网络上留下的数据越来越多,海量数据再通过多维度的信息重组使得企业都在谋求各平台间的内容、用户、广告投放的全面打通,以期通过用户关系链的融合,网络媒体的社会化重构,在大数据时代下为广告用户带来更好的精准营销效果。
阿迪达斯的“黄金罗盘”
厦门育泰贸易有限公司与阿迪达斯合作已有13年,旗下拥有100多家阿迪达斯门店。在最初降价、打折等清库存的“应急措施”结束后,基于外部环境、消费者调研和门店销售数据的收集、分析,成为了将阿迪达斯和厦门育泰贸易有限公司引向正轨的“黄金罗盘”。
厦门育泰贸易有限公司每天都会收集门店的销售数据,并将它们上传至阿迪达斯。收到数据后,阿迪达斯对数据做整合、分析,再用于指导经销商卖货。
阿迪达斯产品线丰富,过去,面对展厅里各式各样的产品,经销商很容易按个人偏好下订单。现在,阿迪达斯会用数据说话,帮助经销商选择最适合的产品。首先,从宏观上看,一、二线城市的消费者对品牌和时尚更为敏感,可以重点投放采用前沿科技的产品、运动经典系列的服装以及设计师合作产品系列。在低线城市,消费者更关注产品的价值与功能,诸如纯棉制品这样高性价比的产品,在这些市场会更受欢迎。
其次,阿迪达斯会参照经销商的终端数据,给予更具体的产品订购建议。比如,阿迪达斯可能会告诉某低线市场的经销商,在其辖区,普通跑步鞋比添加了减震设备的跑鞋更好卖;至于颜色,比起红色,当地消费者更偏爱蓝色。
挖掘大数据,让阿迪达斯有了许多有趣的发现。同在中国南部,那里部分城市受香港风尚影响非常大;而另一些地方,消费者更愿意追随韩国潮流。同为一线城 市,北京和上海消费趋势不同,气候是主要的原因。还有,高线城市消费者的消费品位和习惯更为成熟,当地消费者需要不同的服装以应对不同场合的需要,上班、 吃饭、喝咖啡、去夜店,需要不同风格的多套衣服,但在低线城市,一位女性往往只要有应对上班、休闲、宴请的三种不同风格的服饰就可以。两相对比,高线城市,显然为阿迪达斯提供了更多细分市场的选择。
实际上,对大数据的运用,也顺应了阿迪达斯大中华区战略转型的需要。
库存危机后,阿迪达斯从“批发型”公司转为“零售驱动型”公司,它从过去只关注把产品卖给经销商,变成了将产品卖到终端消费者手中的有力推动者。而数据收集分析,恰恰能让其更好地帮助经销商提高售罄率。
众多数字营销行业专家认为大数据应用处理将成为未来营销市场的主流技术和推力,并在不断成熟的中国数字营销界大放异彩。而基于大数据的成熟,程序化购买在中国将会进入多元化的一年,移动广告流量将会猛增,出现更多更优质的视频流量和社交广告流量来为品牌服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16