
大数据巧治职业差评师 生存空间锐减九成
在网上,职业打假人这个身份因互联网独特的空间属性而变得鱼龙混杂,比如职业差评师,从诞生之初就偏离了打假轨道,靠故意抹黑商家、敲诈勒索牟利。但随着大数据介入治理并日趋成熟,这个群体的生存空间相比于两年前正被迅速挤压。
3·15国际消费者权益日前夕,《第一财经日报》记者从阿里巴巴负责电商平台规则制定的淘宝商家规则部拿到的最新数据显示,目前阿里全网职业差评师攻击数量比2014年8月时的高峰时段下降95%以上,职业差评师的活跃度已今非昔比。而在峰值时,职业差评师新增ID(身份认定)数曾接近4万/周,被相关数据模型命中并认定为职业差评师的ID历史累计接近500万。
对职业差评师的治理有多难?与2012年这个行业刚兴起时主要以单个差评攻击相比,现在的操作模式已经升级为团队作战。通常是相关QQ群里发出一个差评攻击任务,数千个ID闻风而动,对目标店铺进行恶意下单并给出差评,两三天内可以搞垮一家诚信经营的店铺。而这数千个ID背后,很有可能是一个个虚假账号,甚至是一台机器和一串代码,无从溯源。
发展到后来,职业差评师变身雇佣军,成为网店同行之间互黑的一把匕首,且异常锋利。一位曾遭受过职业差评师连环攻击的淘宝店主对本报记者称,一两天内连续收到十几个无理由差评,完全招架不住,就像食人鱼(水虎鱼)聚群攻击猎物一样,一分钟之内猎物的躯干几乎已被吃光,但它仍在本能地喘息挣扎。
淘宝商家规则部王孟杰对《第一财经日报》记者说,曾经在后台监测时发现,某个店铺一天内收到非常多的差评,甚至出现同一个账号在一天内连给它6个差评的极端情况。给差评的前提是买家需在店铺内完成下单消费,这种情况通常可以判断为恶意差评攻击。
相比之下,中小卖家是职业差评师最喜欢攻击的猎物,比如那些信誉度在一颗钻以下的卖家或对异常缺乏购买经验的新手卖家。由于好中差评价在淘宝平台上分列显示,大部分消费者会习惯性地点开差评栏里的评价做参考,评价同时会影响店铺排名,因此差评师的攻击对中小卖家足以致命,而大卖家因为每日销量基数大,受此影响相对较小。
差评师的隐匿性一度让平台方在治理时感到棘手,这两年电商平台与职业差评师之间经历了魔高一尺道高一丈的博弈,而后者越发感到存生的艰难。
以淘宝网为例,在两三年前,对差评师的治理主要靠客服团队接商户投诉,客服小二会要求商家提供恶意差评证据,核实无误后会帮助商家删除这条差评,甚至封号。在这个阶段,治理恶意差评主要靠人肉方式,但效率在职业差评师群体规模疯涨的压力下显得“不那么互联网”。
“现在对差评师的监控和治理会涉及到淘宝的五六个部门协同应对。”王孟杰对本报记者说,从2014年起,这个重任由客服团队过渡给负责平台商家规则的团队接手,而他们制定规则的核心依据之一是模型算法团队根据整个淘系平台的实时交易数据建立的监控模型,同时用户调研团队会给出调查结论供参考,技术团队会对商户端产品进行优化改造(比如给商户添加能看到差评识别的插件)等。
如果涉及问题重大,阿里的安全部门还会介入线下调查、起诉等。
目前,淘宝的这套消费者诚信数据模型的运作方式通常是这样的,它纳入的数据指标已经超过150多个维度,会实时对交易和评价进行动态监控,可以根据某个账号以往在淘宝上的交易和评价数据,并结合此次交易情况来判断其背后是否为一个职业差评师,并自动删除其恶意差评;而对于一个新注册的ID,模式可以通过底层数据积累迅速识别出ID之间的关联性,基本上将换一个马甲再来恶意差评的可能性杜绝。
当职业差评师ID被大数据数据模型识别之后,阿里信用团队会根据不同行为的危害程度,以梯度拦截的方式在交易端及评价端对账号进行限制。对恶意差评情况特别严重的ID,系统将要求其完成一系列身份认证,一旦认证失败,将对该ID做永久封号处理。
淘宝对商家信用体系不断优化调整,以求更多维度、更合理地体现一个商家的信誉,而不是只看差评记录。此举结合大数据模型的监控,让职业差评师在过去一年活跃度锐减。当然,差评师也在钻模型准确性的空子,这个模型日常也在进行更新优化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08