京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据巧治职业差评师 生存空间锐减九成
在网上,职业打假人这个身份因互联网独特的空间属性而变得鱼龙混杂,比如职业差评师,从诞生之初就偏离了打假轨道,靠故意抹黑商家、敲诈勒索牟利。但随着大数据介入治理并日趋成熟,这个群体的生存空间相比于两年前正被迅速挤压。
3·15国际消费者权益日前夕,《第一财经日报》记者从阿里巴巴负责电商平台规则制定的淘宝商家规则部拿到的最新数据显示,目前阿里全网职业差评师攻击数量比2014年8月时的高峰时段下降95%以上,职业差评师的活跃度已今非昔比。而在峰值时,职业差评师新增ID(身份认定)数曾接近4万/周,被相关数据模型命中并认定为职业差评师的ID历史累计接近500万。
对职业差评师的治理有多难?与2012年这个行业刚兴起时主要以单个差评攻击相比,现在的操作模式已经升级为团队作战。通常是相关QQ群里发出一个差评攻击任务,数千个ID闻风而动,对目标店铺进行恶意下单并给出差评,两三天内可以搞垮一家诚信经营的店铺。而这数千个ID背后,很有可能是一个个虚假账号,甚至是一台机器和一串代码,无从溯源。
发展到后来,职业差评师变身雇佣军,成为网店同行之间互黑的一把匕首,且异常锋利。一位曾遭受过职业差评师连环攻击的淘宝店主对本报记者称,一两天内连续收到十几个无理由差评,完全招架不住,就像食人鱼(水虎鱼)聚群攻击猎物一样,一分钟之内猎物的躯干几乎已被吃光,但它仍在本能地喘息挣扎。
淘宝商家规则部王孟杰对《第一财经日报》记者说,曾经在后台监测时发现,某个店铺一天内收到非常多的差评,甚至出现同一个账号在一天内连给它6个差评的极端情况。给差评的前提是买家需在店铺内完成下单消费,这种情况通常可以判断为恶意差评攻击。
相比之下,中小卖家是职业差评师最喜欢攻击的猎物,比如那些信誉度在一颗钻以下的卖家或对异常缺乏购买经验的新手卖家。由于好中差评价在淘宝平台上分列显示,大部分消费者会习惯性地点开差评栏里的评价做参考,评价同时会影响店铺排名,因此差评师的攻击对中小卖家足以致命,而大卖家因为每日销量基数大,受此影响相对较小。
差评师的隐匿性一度让平台方在治理时感到棘手,这两年电商平台与职业差评师之间经历了魔高一尺道高一丈的博弈,而后者越发感到存生的艰难。
以淘宝网为例,在两三年前,对差评师的治理主要靠客服团队接商户投诉,客服小二会要求商家提供恶意差评证据,核实无误后会帮助商家删除这条差评,甚至封号。在这个阶段,治理恶意差评主要靠人肉方式,但效率在职业差评师群体规模疯涨的压力下显得“不那么互联网”。
“现在对差评师的监控和治理会涉及到淘宝的五六个部门协同应对。”王孟杰对本报记者说,从2014年起,这个重任由客服团队过渡给负责平台商家规则的团队接手,而他们制定规则的核心依据之一是模型算法团队根据整个淘系平台的实时交易数据建立的监控模型,同时用户调研团队会给出调查结论供参考,技术团队会对商户端产品进行优化改造(比如给商户添加能看到差评识别的插件)等。
如果涉及问题重大,阿里的安全部门还会介入线下调查、起诉等。
目前,淘宝的这套消费者诚信数据模型的运作方式通常是这样的,它纳入的数据指标已经超过150多个维度,会实时对交易和评价进行动态监控,可以根据某个账号以往在淘宝上的交易和评价数据,并结合此次交易情况来判断其背后是否为一个职业差评师,并自动删除其恶意差评;而对于一个新注册的ID,模式可以通过底层数据积累迅速识别出ID之间的关联性,基本上将换一个马甲再来恶意差评的可能性杜绝。
当职业差评师ID被大数据数据模型识别之后,阿里信用团队会根据不同行为的危害程度,以梯度拦截的方式在交易端及评价端对账号进行限制。对恶意差评情况特别严重的ID,系统将要求其完成一系列身份认证,一旦认证失败,将对该ID做永久封号处理。
淘宝对商家信用体系不断优化调整,以求更多维度、更合理地体现一个商家的信誉,而不是只看差评记录。此举结合大数据模型的监控,让职业差评师在过去一年活跃度锐减。当然,差评师也在钻模型准确性的空子,这个模型日常也在进行更新优化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08