京公网安备 11010802034615号
经营许可证编号:京B2-20210330
求最优回归方程
我们应该求解只使用对目标变量真正产生影响的因子的回归方程。这是因为如果使用对目标变量不产生影响的因子,可能导致预测精确度降低。如果因子很少,求解的变量也就很少。这样,统计的变景数据很少,就可以节省时间,在实际应用中非常有效。在统计学上,仅仅使用产生影响的因子的方程叫做“最优回归方程”,或者“最优回归模型”。
求最优回归方程的步骤如下:
最优回归方程是当Ru是正数且数值最大时的组合。
接下来,说明实际操作步骤。
1、进行回归分析后,把表1的分析结果(1、2、3)代入回归方程,计算因子选择标准(Ru)为0.72l。
表1
2、接着,进行因子分析,结果如图1所示。从图1可知。影响度绝对值最小的因于是“拍卖会地点”。因此,删除所有拍卖会地点的附属项目 (“东京”、“关东(不古东京)” 、“东海”、 “近畿”、 “中国、四国、九州”)。
图1
3、对表2进行回归分析
表2
表2的目归分析结果,如表3所示。
表3
4、根据表3.得出Ru是0.726.然后以此进行因子分析,其结果如表4所示,可知影响度绝对值最小的是“AW”。
表4
把表4制成Excel柱形图,如图2所示。
图2
5、删除影响度数值最小的“AW”,再次进行回归分析。
重复操作直到目于减少为1个。这里省略对操作步骤的说明。
到目前为止。共计运行了8次回归分析。下面求8次运行结果的Ru值,并统计到表5中。
表5
把表5转换成折线图,如图3所示。
图3
使因子选择标准Ru最大的组台,就是最优回归方程。从表3 25得知,当因子数是7个时,可得最优回归方程。
因此,根据表3得出最优回归方程:
方程1
根据方程1求最高价格:
y=267.58+46.99+23.59+45.74-241.94十(-3.41)*40+6.99*22+86.30*4.5=991.60')
用同样的方法求最低价格:
y=267.58+0+O+0+0+(-3.41)*65+6.99*0+86.30x3.5=347.98"
我们的求最优回归方程和前面的几节教程是相互联系的,大家在学习的时候要从前到后的学习,这样才可以学会的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27