京公网安备 11010802034615号
经营许可证编号:京B2-20210330
学习预测和因子分析
根据上节什么是因子分析的表4回归分析结果求回归方程(方程1)。这里使用上节表4下方的“系数”值求解和学习预测和因子分析。
方程1
接下来,用回归方程进行预测。此处的数据(N0.336-340)不用于回归分析,而是专门用于预测与检验(表1)。
表1
预测No.336如下:
No.336的预测值=265.95+0+20.91+0+58.04+10.94+(-3.37)*45+6.74*3+84.72*4.5≈605.52'
同样地,预测No.337如下:
No.337的预测值=265.95+45.24+20.91+45.74+58.04+10.94+(-3.37)*51+6.74*0+84.72*4≈613.69'
下面用同样的方法计算No.334的预测值。No.336到No.340的预测值如表2所示。
表2
比较预测值与实际值,判断预测精确度的高低。求解相对误差的公式如下:
公式
表3 I 3中,“二手车价格”这一列的数据是实际值。根据表1和表2求相对误差(表3)。
表3
求相对误差的绝对值。再计算所有绝对值的平均值,结果是12.1%。
笔者不知道实际市场上使用什么方法确定二手车价格,但是建议先对历史数据进行同归分析,然后使用得出的回归方程确定二手车价格。
只要掌握了分析方法,无论是谁都能求出回归方程。回归方程,就是确定价格的标准方法。
接着进行因子分析。
由于“LD”、“AW”、“空气囊”、“颜色”、“拍卖会地点”是定性数据,因此需要求t值范围。假设删除的项目的t值为0。
“LD”的影响度=3.05-0=3.05
“AW”的影响度=2.00-0=2.00
“空气囊”的影响度=3.99-0=3.99
“颜色”的影响度=15.21-0=15.2l
“拍卖会地点”的影响度=1.00-0=1.00
因为“行驶距离”、“车检剩余有效月数”、“评分”是定量数据,所以t值就是影响度。
“行驶距离”的影响度=-6.4l
“车检剩余有效月数”的影响度13.73
“评分”的影响度=6.15
表4是影响度的统计表。把表4做成如图1的柱形图。
表4
图1
从图1来看,对二手车价格的影响度由高到低的因子依次是:“颜色”、“行驶距离”、“评分”,“空气囊”。
什么是类别分析
类别是指项目的具体内容。例如,“颜色”这个项目的类别是“黑色”, “浅蓝色”、 “藏蓝色”、 “酒红色”等。用类别分析可以求出各个类别对于二手车价格的影响。
进行类别分析时,须求回归系数(类别区域)。类别区域(回归系数)可以根据表5求出。
表5中,回归系数的数值就是类别区域。将删除的数据,如“无LD”、 “无AW’、 “无天窗”的类别区域假设为0。
表5
从类别区域看,“有LD”的比‘无LD“的贵45万日元;“有AW”的比“无AW”的贵2l万日元;“颜色”中黑色比其他颜色的价格贵很多。
通过类别分析,可知“黑色”对_二手车价格影响最大。今天的预测和因子分析就说完了,其中包含了因子分析和类别分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22