京公网安备 11010802034615号
经营许可证编号:京B2-20210330
从大数据看棉花行业供给侧改革
国储棉轮出已经进行了一月有余,热度不断攀升,棉花价格居高不下,截止到目前,除5月30日单日成交率不足90%以外,其余单日成交率均维持在97%以上,最高成交价格更是高达14350元/吨。然而,今年初,棉花市场并非如此景象:市面上很多棉花都无人问津,不少业内人士表示行情不好,有时亏本都做不到生意。现如今,大家纷纷猜测,难道是国储棉激活了整个市场?可是回忆去年,国储棉拍卖却远不如现在这般红火:累计成交量(6万多吨)仅占轮出资源总量(100多万吨)的6.34%左右,成交结果十分惨淡。同样是棉花市场,同样是国储棉,前后反差竟然如此之大,很多人不禁担忧,行情波动真的没法预测、没法控制吗?再者,近来国储问题频发:越来越多的贸易商参与竞拍,未来棉花价格走向难以预测;拍储成交后出库速度太慢,违规收费时有发生。棉花交易市场已经呈现紧张氛围,一定程度上也引起了部分纺企的恐慌心理。
棉花市场行情波动如此之大,问题究竟在哪?笔者认为,主要原因还在于目前的棉花交易大体采用比较传统的经营模式:成交总是建立在较为主观的判断基础之上,资源信息也无法大范围流通。加上市场本身波动较大,这种方式显然已经无法满足当下的消费需求。从交易商的角度看,交易双方需要耗费大量的时间和成本来找货和谈判,运输过程中还要承担很大的风险,而且选择范围非常有限。从市场的角度看,这其实造成了整个行业内人员、资本、时间以及物料等资源的浪费:每一次交易都需要重复冗长的流程;各交易方获得的资源、经验都无法在整个行业内进行充分的传播与共享;交易所需的时间和成本总会被挤出一部分用于风险控制,而且往往并没有多大效果。说到底,还是因为交易过程中存在种种不确定性:无法实时了解市场行情,无法随时获取资源信息,无法尽快掌握合作对象及其货物信息。如果棉花行业也有专业的大数据分析,并积极推进供给侧改革,信息不透明、资源不共享等问题将得到大幅度改善。
以互联网为基础的大数据,是一个行业资源信息的总和,来源于无数渠道,提炼为有效信息,而后才能为行业所用。其最核心的价值在于能够快速地、对海量数据进行存储和分析。相比现有的其他技术,大数据“廉价、迅速、优化”三方面的综合优势是最明显的。因此,无论是对于互联网公司,还是整个行业,快速掌握大数据技术已经成了决胜性战略。大数据是技术,供给侧改革是经营模式。当下中国经济所面临的困境,仅从需求侧入手已经很难有所突破,因此供给侧和需求侧相结合才是结构性改革。提高供给质量,优化资源配置,扩大有效供给,让供给侧与需求侧相互适应,从而提高全要素生产率,是所有行业都应该追求的终极目标。如果棉花行业也有专业的大数据分析,并进行有效的供给侧改革,产能升级、去库存、供需对接都可以实现。如此一来,棉花生产、交易、消费等环节都能高效运转:棉农会根据最科学的需求数据去种植棉花;买卖双方会在适当的时机、以最合理的价格和最合适的对象进行交易。各环节效率提高了,资源利用率也会随之提高,交易成交率亦是如此。如此一来,供需对接、零库存将不再是一句空话。
比如棉庄,作为一家以棉花B2B电商平台为开端,定位于为棉花交易提供服务的互联网企业,一直在努力构建棉花行业大数据体系。依托现有的平台(包括web端和APP端),棉庄努力扩大信息来源渠道,把现有的所有资源整合在一起,从需求点切入,供用户选择;同时不断完善数据分析对比功能,为大家选择货物提供最直观的判断标准。此外,定位于棉花交易服务平台,棉庄将查询与交易功能做了严格的区分:棉庄货架中罗列的都是精准、可出售的现货;而资源搜索则涵盖了所有货源,质量报告可随时随地进行查询。通过多维度的数据分析,棉庄正在渐渐地向行业大数据靠拢,为棉花产业链所有参与者提供数据参考,从而使棉花行业供给侧改革成为可能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23