
大数据、物联网和区块链:沿着黄砖路吗
大数据和物联网(IoT)。两者在颠覆性技术的名单上排名很靠前。与大多数技术一样,都有协同的领域,最终提供一条实现真正的商业价值的黄砖路。
Blockchain进入颠覆性的对话
但最近,一个新的话题使颠覆性技术的讨论更加活跃:Blockchain技术。并且必不可少的随之而来了一系列问题。它究竟是什么?它是如何帮助(还是真的作用到)提供商业价值?它将如何影响我目前的积极性呢?并且协同效应存在什么问题,或者我需要担心它吹动一切吗?
什么是Blockchain——它是如何与比特币联系在一起的?
如果你在谷歌搜索blockchain,你会发现“blockchain”和“比特币”不可避免的成对出现,那是因为blockchain技术使电子货币比如比特币起作用。如你所知,比特币没有物质形态,不被单一的实体约束,也不被任何政府或机构支持。
(在这里,我不会试图讨论比特币的利弊。这些对话几乎和情感政治讨论一样并且足够多使书填满。)
一个永久的数字事务数据库
简而言之,blockchain是一个数字分类帐处理的事务,你可能认为是一个电子表格。然而,它由一个不断增长的称为“块”的处理清单构成——所有的块按顺序连接。每个块链接到列表中的前一个,链中的每一块都不能被删除,所以它变成了包含自成立以来发生的所有事务的永久数据库的一部分。
它也是最终的分布式数据库
但最有趣的事是blockchain是没有中央集权控制或单一来源的数据库。这意味着它存在于每一个与之关联的系统。是的,每个系统都有自己blockchain的完整副本。随着新块的添加,他们被每一个系统收集到最终的分布式数据库中。如果你弄丢了你的副本,没关系。重新连接blockchain网络你会得到一个新的整个blockchain的副本
但是如何确保交易安全呢?
现在你可能在想,怎么可能有一个安全的方法进行数字交易呢?”简而言之,就是通过一些非常复杂的密码学,数学,众包共识。在YouTube上有一个很棒的视频详细解释过。20多分钟,但是我见过的对这个非常复杂的解决方案最好的解释。
网络上称其为“不可靠系统”这并不是说系统不能被信任。它只是意味着两者不需要可信的第三方(如银行或信用卡公司)保持分类帐和有效的交易。因为每笔事务交易总可以被分布式分类帐验证,各方都留有一个副本。
注意:最要去理解的一件事是,尽管你不能用没有blockchain的比特币,但你可以使用blockchain而不涉及比特币-并且这个时候事情会变得非常有趣。
Blockchain和大数据
当你基于比特币谈论blockchain与大数据的连接似乎有点脆弱。如果在比特币之外呢,blockchain为其他金融交易分类吗?或商业合同?或股票交易?
金融服务行业开始认真看区块链技术。花旗、纳斯达克和Visa最近取得了显著成效,比特币blockchain服务提供者。奥利弗商量之后,瑞银集团(UBS)的首席信息官 Oliver Bussmann表示,blockchain技术可以“削减事务处理时间从几天到几分钟。”
金融服务行业对blockchain的需求是强大的。你可以想象blockchain的规模,在巨大的数据块的湖泊中,包含每一个金融交易的全部历史,所有可用的分析。Blockchain提供分类的完整性,但没有分析,这就是大数据和相应的分析工具应该发挥作用的地方了。
Blockchain和互联网的东西
毫无疑问,物联网产业是一个巨大的增长产业。Gartner预测,,在未来4年物联网的设备数量将会超过250亿。这些可以小到小型的感应器大到大型设备,两个关键的挑战是确保这些设备和他们交换数据的隐私。
传统的集中的处理和消息代理可以帮助解决这些问题,但他们的规模将无法处理未来物联网设备的数量和设备产生的数千亿笔交易。
追随黄金大道
每次只能构建一个区块,并总是成长和前进的,但还保持着它的踪迹。虽然blockchain最初的目的是支持比特币这样的数字货币,像大多数的颠覆性技术一样,它的价值以意想不到的方式和方向增长。
作为一名技术员,我发现技术如此的引人入胜。也就是说,技术只是一个工具。确保其可用于提供真正的商业价值才是我们的责任。无论它是减少事务处理时间,还是分析交易趋势,或提供一个机制来安全保障物联网通讯,大数据和物联网的协同效应是一条我们可以遵循获得真正的商业价值的黄砖路。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30