
更了解客户 联想大数据技术有何不一样
在互联网+时代,如何利用好大数据,为企业带来更多价值,已经成为决定企业成败的关键。
作为全球知名的IT厂商,联想一直专注产业创新,在1999年成立的联想研究院就承担着紧跟时代创新的责任。近日,在第二届中国国际大数据大会上,联想研究院展示了其在大数据方面的新产品和解决方案,成为了大会的一大亮点。
联想集团副总裁、联想研究院云计算与智能计算实验室主任黄莹先生和联想集团研究院大数据总监郭炜先生在此次会后接受了笔者的专访,就当前联想在大数据行业的进展以及联想大数据行业发展趋势等问题进行了深入探讨。
联想大数据技术为何而生?
提到联想,大家都会想到其是一个传统的IT企业,但是其身上却并不缺少创新基因。2015年联想在PC、手机、服务器、存储等产品线都取得了巨大的进展,PC+战略让其在依托强势PC基础上,拓展了更多的业务,这一切离不开联想创新的支持。因为联想深知互联网+时代,要想不被潮流颠覆,就要引领潮流、顺应潮流,利用创新取得成功。
联想集团副总裁、联想研究院云计算与智能计算实验室主任黄莹先生表示:"联想一直谋求转型,在大数据方面联想做了深入的工作:例如,联想要把传统企业的一些企业系统进行连接,使数据进行流通。同时联想还会对非结构化的数据进行采集,然后进行分析出价值。联想还会跟踪业界最新发展,加入到开源社区,促进大数据应用的落地等等。"
如今联想已经将大数据分析技术运用到其旗下产品的开发中,联想会对这些收集来的信息进行数据源处理,让相关业务决策人员看到有价值。联想集团副总裁、联想研究院云计算与智能计算实验室主任黄莹表示:"大数据方案公司内部可以用,然后再去帮助外面的客户产生更大价值的时候,这是研究院工作的最理想的路径。"
第2页:联想大数据技术的优势?
联想大数据技术的优势?
谈到联想在大数据方面的优势,联想联想集团研究院大数据总监郭炜先生表示:"联想拥有从PC、手机、到服务器等为用户提供更多的硬件设备和解决方案,并且联想一直坚持为客户的核心业务来帮助客户解决问题。"
黄莹还补充说,利用Hadoop、Spark等技术,以及在爬虫、自然语言处理等方面的专利技术,收集的评论、反馈等信息,拉近了设备厂商与用户之间的距离,使得联想能够更加精准的了解用户想要什么,进而体现联想大数据技术的分析价值,这对于整个联想来说,不单单是在产品层面能够大大获利,在集团的整体运营、管理和发展等方面都能够进入一个非常良好的循环当中。
在大数据市场,一家厂商很难满足不同企业的需求,这就需要联想与众多合作伙伴一起来合作,为客户提供最佳的解决方案,如今联想与VMware、SAP、微软、EMC等厂商进行了强强联合,并且自己收购还收购了Symstem x服务器,大大提升了联想方案的能力。未来联想将会是开放的态度去跟合作伙伴一起开发这个市场,通过各个环节业界最优秀的合作伙伴合作,联想可以更专注于自身实力最强的领域,更快的给客户提供最好最先进的端到端的解决方案。
趋势不可逆,联想大数据分析的价值
在谈到大数据市场发展趋势的时候,黄莹表示:"以前你可能会觉得大数据有一点阳春白雪的感觉。但是现在因为业务的推动,已有的技术已经不够了,需要进行更多的创技术新,才能跟上业务发展的节奏。这也是大数据发展比较健康的标志,不是为了研究而研究、为了创新而创新。而是真的为了满足业务需求。"
在互联网+时代,像联想这种能够提供智能手机、平板以及个人云应用,让数据可以在不同设备之间相互传递,并且提供从IT基础设施(服务器、存储等)到移动终端(智能手机、平板等)的端到端的解决方案是很少有厂商能够办到的。随着大数据行业的成熟,相信联想在这个行业能够为客户带来更多价值
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04