京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代 的应急管理变革
当前,大数据浪潮汹涌澎湃。大数据所具有的大量(volume)、高速(ve locity)、多样(variety)和真实(ve racity)的特性正在推动原有社会生产生活模式的重大变革。在应急管理领域,大数据技术的发展至少带来两个方面的革命性变化。
一方面,大数据的出现改变了突发事件的发生、发展和演化的时空模式,加深了突发事件的不确定性。数据关联和信息联通扩大了传统突发事件的影响范围,数据的高速传输也可能使某些负面信息通过互联网瞬间引爆网络群体性事件。海量个性化数据的存储和传输过程中的安全问题则孕育了超乎想象的全新风险。
另一方面,大数据又为可测量、可追踪和精细化的应急管理提供基本信息和管理工具。大数据技术可将这些纷繁复杂的多源异构数据处理成具有决策价值的有效信息。传统管理模式下,应急决策大多是依据个人经验的直觉决策(heuristic decision),而大数据技术的应用使得高度不确定性和高度时间压力下的分析决策(analytical decision)成为可能。
这两个方面的变化是相辅相成、具有逻辑关联的,前者是应急管理对象的变化,后者是应急管理方式的变化,正是由于大数据时代突发事件的形式和规律都在不断发生变化,因此适应大数据发展的应急管理方式变革势在必行。
综观世界各国应急管理的最新进展,大数据技术的应用大致体现在以下五个方面。
大数据技术在突发事件监测预警领域的应用。著名的大数据研究者迈尔·舍恩伯格和库克耶在其畅销著作《大数据时代:生活、工作与思维的大变革》中指出,“大数据的核心就是预测,是把数学算法运用到海量的数据上来预测事情发生的可能性”。并描述了一个运用大数据技术预测突发公共卫生事件的经典案例:谷歌公司通过保存和分析人们的搜索指令准确地预测了2009年甲型h1N1流感的爆发,比美国疾病预防与控制中心(CDC)依靠传统方法的预测提前了两周,为有效控制流行病传播提供了宝贵时间。美国政府在国家安全战略中引入大数据技术,用于对恐怖主义活动、黑客攻击、公共卫生事件、舆情危机等进行监测和预警。
基于大数据技术构建的辅助决策系统。危机情景下的决策始终是应急管理领域的一个重大挑战,危机决策的挑战来自于信息不完备、时间压力大等客观条件的约束。大数据技术使得基于所有数据而不是样本数据的决策成为可能。以美国为代表的发达国家开始探索基于大数据技术的辅助决策系统。美国国土安全部从2012年开始运行了第一个跨部门大数据应用试点项目——“海王星”(Neptune)和“地狱犬”(Cerberus),数据库以完全不同于国土安全部自2002年沿袭至今的方式进行了重新组织,计划将不同来源的未经分类的信息汇聚成一个“数据湖”,对海量数据的综合分析成为国家安全决策的重要参考。
大数据技术在城市管理和社会管理领域的运用。大数据将兴起于2008年的“智慧地球”和“智慧城市”建设推进到全新的阶段。城市管理的一个重要方面就是确保城市公共安全。“智慧城市”运用信息和通信技术手段感测、分析、整合城市运行核心系统的各项关键信息,城市系统的突发事件,特别是城市生命线、基础设施、重点地区的突发事件都在“智慧城市”系统的监测之中。而以“网格化管理”为特征的新型社会管理模式也通过监控录像、社区服务信息等途径不断积累大数据,这些数据对于掌握城市和社会的脆弱环节,控制和消除风险因素起到重要作用。
大数据技术对危机中个体行为模式的研究和应用。大数据时代中,由于人的各种行为都可以数据化,因此通过大数据技术分析危机中个体行为模式构筑了应急管理领域中的一个政策基础。大数据技术通过分析单个网民的传播模式研究了舆情热点事件的演化过程,大数据技术通过分析大量个体的言论和行为从而预测群体性事件发生的可能性,大数据技术通过分析人们接受各类灾害(如暴雨、飓风、地震等)的预警信息之后的行为反应以设计更加有效的风险沟通策略,大数据技术追踪个体在灾害中的逃生和自救行为,从而提升应急疏散和第一响应的能力。
大数据技术在应急资源配置中的管理。应急管理是在危机情景下组织应急人员、调配应急物资以缓解和消除危机负面影响的过程。借助于大数据技术,人员流动和物资流动都可以转化为各种形式的大数据,如通过通讯基站可以快速确定通过手机等通讯设备发出应急信号的人员位置,而急救车、消防车等应急设备的运动轨迹可以通过GPS进行定位和追踪。通过对这些数据集的分析可以针对灾害发生的时空规律对应急资源进行优化配置,对危机情景下应急物资的调运进行最优的线路设计。大数据技术使得应急资源的布局和运用更加精准、高效。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21