
大数据:5种方法解读网站分析数据
数据是进行网站分析的基础,Google Analytics为一个网站提供了上百个报告和数据指标,它们分散在不同的维度中,如何来解读这些数据呢?单一的数据本身没有任何意义,只代表了它记录到的信息。(比如PV只代表页面被显示的次数)不同的处理方法也会获得不同的数据结果。(追踪代码在页面的位置会影响PV数据的记录结果)网站分析的工作就是通过对网站数据的解读,产生有意义的结果。(将数字转化为人类的语言)
跳出率是我们在网站分析中比较关注的一个数据指标,单一的跳出率数据有什么意义吗?
举个例子,网站的跳出率是50%,一个不好也不坏的数字。这个数据有什么意义吗?我觉得没有。因为它不能告诉我们任何信息。单纯的数据无法被解读。数据只是数据,不是人类的语言!
面对这样的数据,在进行网站分析时可以用5种方法来对数据进行解读。让数据变的更易读更有意义。并对下一步工作具有指导意义。下面用5种方法逐一来解读“网站的跳出率是50%”这个数据。
解读数据前先要清楚的了解数据背后所代表的意义及产生的原因(这个数据是如何被计算出来的。)
解读数据: 网站的跳出率是50%
跳出:指单页访问或访问者的次数,即在一次访问中访问者进入网站后只访问了一个页面就离开的数量。
跳出率:指某一范围内单页访问次数或访问者与总访问次数的百分比。
跳出率=跳出访次/所有访次
结论:跳出率是一个负面指标,数据高不是个好事情。这个网站的跳出率有50%,说明有一半的访次在网站上只浏览了一个页面就离开网站了。
如何在Google Analytics中实现:在报告中,每个指标右侧都有一个问号标记,点击这个标记可以看到google对这个指标的定义和计算方法。
前面知道了跳出率是个负面指标,但单一的50%我们不知道他对于网站来说究竟是算高还是算低,因为没有参照物。我们需要一个参照指标来对目前的数据进行衡量。这个参照指标可以是网站历史同期的指标。(对于有销售季节性的网站,历史同期数据很重要)也可以是行业基准指标。
对比前首先要确定这个数据产生的时间,然后选择有比较意义的历史数据,通过对比可以看出目前数据的好坏。
解读数据: 网站的跳出率是50%
确定数据产生的时间范围是2010年3月份。选择历史同期数据2009年3月份数据进行对比。(或者行业基准数据)
历书数据:2009年3月份的跳出率是40%
行业数据:跳出率45%
结论:3月份网站的跳出率是50%,这个数据高于去年同期数据,同时也高于行业基准数据。根据跳出率的定义,3月份网站对访客的表现变差了,有更多的访客只在网站浏览了一个页面就离开了网站。
如何在Google Analytics中实现:在报告菜单中有基准数据(Benchmarking)选项,找到与网站同行业的基准数据进行对比。
除了和历书数据相比,还要把数据带入到趋势中,因为数据不是孤立的,产生的原因多种多样。通过趋势中的背景信息可以获得更多的信息来解读数据。
解读数据: 网站的跳出率是50%
将3月份网站的跳出率是50%的数据带入到网站第一个季度的趋势中:1月份跳出率40%,2月份跳出率60%,3月份跳出率50%。通过对比发现在第一季度中网站的跳出率是一个先增后降的变化趋势。3月份的跳出率虽然比历书数据和行业数据要差,但其实是一个向正常的回归。而真正造成3月份跳出率高的原因其实发生在2月份。这时候就需要对2月的情况进行检查,比如:网站在2月份进行过改版,或者开展了某种营销活动。导致数据不稳定。
结论:50%是在变化趋势中的一个数据,虽然比历史同期的表现要差,但是是向正常趋势的回归。所以不能仅凭50%的跳出率就说网站在3月份的表现变差了。
如何在Google Analytics中实现:在报告中选择不同的时间范围进行数据对比,所选择的对比时间范围将贯穿整个报告。
通常网站的数据是对网站内不同频道,不同页面在不同时间内表现的一个汇总情况。在网站中,由于内容和功能的差异,所以各个频道或页面的数据表现都会不同。将网站总体数据分解到不同的内容中可以找到真正存在问题的部分。
解读数据: 网站的跳出率是50%
网站3月的跳出率是50%,是由3月每一天的跳出率汇总的。也可以是由网站的每个页面,每个频道数据汇总的。将数据细分到每个频道中会发现可能大部分频道的跳出率都低于50%,只有某个频道80%的跳出率拉高了整个网站的跳出率水平。
结论:网站的整体数据是没有可操作性的,因为我们不知道问题真正出在哪里。通过细分可以找到真正出问题的地方,并且有针对性的进行优化,进而提高整个网站的表现。
如何在Google Analytics中实现:在高级群组中按页面内容创建自定义群组,并对不同页面和频道的数据进行对比。最多只能同时查看3个高级群组。群组数据会贯穿整个报告。
网站的百分比数据通常都是一个平均数,比如跳出率,平均停留时间,平均页面浏览量等等。和汇总数据一样,这种数据没有可操作性,并且掩盖了网站中表现不好的部分。打破这些平均数可以发现真正有问题的部分。
解读数据: 网站的跳出率是50%
50%网站跳出率=网站中所有跳出访次/网站所获得的所有访次
可以按多种维度来打破网站的平均值
按流量来源:
百度跳出率=来自百度的跳出访次/百度带来的所有访次
按访客地区:
北京跳出率=来自北京的跳出访次/北京带来的所以访次
按访问时间:
第一周跳出率=第一周的跳出访次/第一周的所有访次
按频道内容:(需要有规范的URL规则支持)
新产品页跳出率=所有新产品页面跳出访次/网站获得的所有访次
按页面属性:
营销推广跳出率=推广页面的跳出访次/推广页面获得的所有访次
按访客属性:
新访客跳出率=新访客的跳出访次/新访客的所有访次
结论:不同来源,不同地区,不同页面和不同的访次有不同的跳出率。通过细分可以打破网站的平均数陷阱。
如何在Google Analytics中实现:新老访客,流量来源等数据可以直接在高级群组的默认群组里选择,其余的群组需要自己创建。或者使用自定义报告。
最终结论:跳出率是一个负面的指标。网站50%的跳出率是在一个变化趋势中的数据,虽然高于历史和行业水平,但是在向正常水平的回归。通过对跳出率的细分可以发现,高跳出率是由于某个地区或某个流量来源的新访客在营销推广类页面上的表现造成的,这部分数据拉高了整站的跳出率水平,这类营销推广活动和新访客是造成网站在跳出率上表现差的原因。
解决的方法是
1优化营销活动页面。增加页面上的引导信息,降低跳出访次。
2分割流量进行对比。网站分割出营销推广的数据后,与历史数据再进行对比。
3细分现有流量。分割数据后对有问题的部分进行细分,对高跳出率的流量重点优化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08