京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的财会变革
大数据来了,你准备好了吗?
财会界发生的重大事件,我们常用“变革”这个词来形容其重要性,但也常有夸大其辞之嫌,但这次“变革”真的到来了。“大数据”这个词正被越来越多的人熟知,大数据不仅仅是财会界的事情,还是网络时代信息化的一次重大变革,但这一变革对财会领域的影响恐怕要超过其他很多领域,因为财会界就是与数字打交道的,而大数据也是基于数字的革命,因此,不认识大数据的本质,并相应做出变革,很可能沦为落伍者而被淘汰。
什么是大数据?简单来说,大数据就是把零碎的、散布于各个领域的数据通过某个点联结起来,并通过电脑的测算发现其中的规律,可以更有针对性地采取应对行为,进而提升人们的工作效率和生活质量。所以,大数据的本质可以简单概括为“通过数据找规律,通过规律提效率”。毫无疑问,大数据将大幅提升财务工作的效率,但也会对财务工作带来诸多挑战。财务工作中很多固有的方法将不再奏效,财务人员应进行相应改变,以适应这种新环境和新常态。
首先,企业的财务要从核算型向管理型转型。目前企业的财务工作,仍然把财务核算作为工作的核心内容,而管理会计的发展相对滞后,财务对于企业的发展战略和管理支持帮助有限。虽然基于传统的管理会计方法,可以通过计算基于财务报表的相关比率得到一些信息,但这些信息是基于财务模式和特性的,所以其价值往往也只是基于企业的财务管理方面,而大数据则会让企业得到许多财务管理之外的信息,比如,通过基于客户消费习惯的大数据分析,可以为企业的产品生产提供更有针对性的信息;基于销售人员的销售方式进行分析,发现哪些销售方式的投入产出比更大,以便让销售经费能够有的放矢。企业的销售数据往往极其庞大,传统的财务核算是无法完成的,必须通过大数据来能解决。因此,财务人员不能拘泥于以往的管理会计知识,应该从更高的高度和更广的角度看待自身的责任,大数据是对所有财务人员一次测验,通过这项测验的人才能成为大数据时代的合格会计师。
其次,大数据会让企业管理从事后补救型向事前干预型转变。企业的管理工作往往是“盲目”的,因为管理过程中充斥着各种未知因素,使得管理者虽然“身在此山中”,却“云深不知处”,在一些对企业不利的突发事件发生前,因未能做到未雨绸缪,常常是损失发生后才“亡羊补牢”、总结经验教训,以便未来可以避免类似损失。大数据可以让管理者变得更加聪明,他们可以像诸葛亮那样运筹于突发事件之前,可以避免突发事件的发生或最大限度的减少损失。“大数据”有着最好的记忆力,通过对大数据分析后,很容易找到突发事件的运行规律和概率,制定相应措施防止事件的发生。有了大数据,企业的管理工作从漫天扔炸弹转变为扔下一颗颗“精确制导炸弹”,管理工作不再是事后盲目的堵漏补缺,而是事前“点对点”制定相应方法和措施。
第三,大数据会让成本核算更有针对性。这可以从两个层面进行理解:一是“钱与事”的关系,全面预算管理早已在企业中流行起来,很多企业都制定了规范的全面预算管理办法,但其效果仍然不尽如人意,因为让很多企业感觉困惑的是,虽然有了全面预算,但“钱与事”的相关度如何仍是未知的,企业的预算管理者常常会问:这件事情是不是可以用更小的预算解决呢?通过大数据分析,可以很好建立起“钱与事”的匹配关系模型,预算制定的信息对称性将大大加强。二是大数局可以让企业的成本核算更为精细准确,无论是作业成本法、标准成本法或别的成本核算方法,其关键要素就是成本定额的制定,大数据可以让企业能建立更加科学的成本标准,制定更加准确的作业指标。
第四,大数据将打破传统人力资源格局。大数据时代,企业的原有的财务岗位职责将会重新被定位,一些岗位可能会被撤销或合并,与数据处理相关的岗位可能要集中,财务人员的职责分工可能不再以账目为依据,而是以数据和信息作为依据。当然,这对企业的内控工作会带来挑战,需要企业信息管理系统在网络监督上相应调整。财务人员的绩效考核方式也会同样发生转变,很多将不仅仅把财务员工局限于部门的角度考核,而可能站在企业的高度进行考核。因此,财务人员应该有系统性思维和管理性思维,对企业的生产、管理、营销等各个环节都应有透彻认知,能够充分理解企业的战略和使命,能够解读大数据背后对企业有价值的信息。
总之,大数据来了,它将会无孔不入地渗透进人们的工作和生活。你可能会对于它发现你的网络轨迹而感到不适,你可能会对于一些隐私信息的暴露而感到懊恼,但你却不可能回避它或无视它,而只能去迎合、学习和适应它,因为我们本身就生活在一个应对急剧变革而不断学习的时代。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22