京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代:营销从此大不同
大数据已然为整个营销行业带来了翻天覆地的变化。根据市场调研机构GfK去年发布的数据显示,62%的营销机构已经开始改变自身角色,用全新的工具进行市场营销,86%则表示在将来会继续基于大数据进行营销的策划和执行。
对于搞营销的人来说,大数据是他们梦寐以求的工具。互联网的发展,使得企业有更多的渠道去找到目标消费者,他们所能获取的信息也是空前的。
商业机构进行数据收集已有数十年的历史,而互联网的出现,尤其是社交网络的出现,个人信息和个人行为数据变得唾手可得,对信息进行筛选加工的方式更是多种多样。
大型跨国企业,如Target,亚马逊,沃尔玛等对于数据的挖掘起步较早,相关的基础设备和架构的建立也快人一步,对大数据反应滞后的企业在很多时候更像是一步跟不上,步步跟不上,始终处在拼命追赶的状态。大数据时代同时也蕴藏着更大的挑战--数据的收集,存储和分析均需要耗费很大的人力和物力。
从消费者的角度来讲,隐私问题愈发凸显。越来越多的人开始意识到,通过少部分的个人信息可以换取更加实惠的价格和更优质的服务。相对而言,年轻人对于这一观点的接受度要稍高一些,但不同的消费者对个人信息共享程度的判定是不一样的。
有这样一个例子,沃尔玛超市会综合分析当地的天气,超市的存货量以及购物者数据,之后针对特定人群推销烧烤架清洁工具。沃尔玛的这种行为可能看起来无可厚非,但如果换成是保险公司呢?如果他们通过对我们的数字轨迹(如社交网络分享、聊天数据)进行深度挖掘,从而定向营销,我们又该怎么办?
大数据已然为整个营销行业带来了翻天覆地的变化--根据市场调研机构GfK去年发布的数据显示,62%的营销机构已经开始改变自身角色,用全新的工具进行市场营销,86%则表示在将来会继续基于大数据进行营销的策划和执行。
下面来看几个比较典型的例子:
1、在运用大数据进行营销上,亚马逊一直处在领先位置。最近,亚马逊官方宣布它们正在测试和研究“未下单,先发货”功能--根据购物者的购物数据预测你将要购买的物品,实现未下单提前发货的功能。
2、网上票务销售公司StubHub同样也在利用大数据针对潜在客户进行定向营销。在特定的消费者群体中,这种策略尤为奏效--如球迷,他们对于某支球队的热爱甚至会延续终身,这也使得他们成了营销机构的猎物。
3、2013年,eBay修改了用户登录界面,以更大限度地开发利用大数据。用户可以选择自己想要关注的项目,用户还可以录入自己的兴趣爱好,eBay据此推送用户可能感兴趣的消息。
4、Netflix为用户建立了复杂的“个性化类别,”记录用户所有的观影行为数据,并用多大上百种标签对用户进行分类。这样,Netflix就能分析出你所偏爱的影片类型,比如说,你喜欢看剧情纠结的外语片--并据此像你进行影片推荐。
5、在线下,一些超市正在试验NFC(近场通信技术),在消费者从附近走过时可以根据其以往的购物行为有针对性地推荐商品。
上面这些营销手段之所能够施行,原因在于企业可以利用一系列结构性的数据--如你的年龄,性别,位置,和购物行为。
然而,据统计目前我们所能利用的数据只占全部网络数据的20%--更多的数据存在于Facebook和Tweeter上,还存在于海量的博文、视频和音频中,这些数据更加庞杂。
非结构性数据的收集、分析和利用固然有很大的难度,一旦企业掌握了这种技术便会获得得天独厚的优势。比如,零售商可以将商店内的视频监控信息发送给云服务提供商,通过特定的识别算法(面部识别),从而辨识出用户的身份和行为方式(用户在商店的行进路线,拿起的商品,是否购买,在收银台排队等待的时间等等)。
……
对于企业利用大数据进行营销,无论你是否看好,这些技术仍会继续进化,应用范围也将进一步扩大。随着公众对于隐私泄露担忧的家居,政府也必将出台相应的管理法案,对企业的数据挖据和分享行为进行规范。在我看来,规范是必然的。但营销机构则会适应规则的变化,而且它们一直都有着很强的适应能力和生命力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27