
大数据业务应用场景
“将数据转化为洞察”,这是不是很容易?在大数据时代背景下,你可能会认为每个人都在做着同样的事情。如果不幸成为例外,那只能说明你已经落后于时代了。但是,对很多IT负责人来说,大数据仍然是一个全新的领域,不对其过分追求反倒可能是当下合理的选择。
关于大数据的应用在各行各业俯首皆是。比如,零售行业通过将购物偏好和位置信息相结合,为客户提供更加个性化的服务和商品;或者,制造业通过预测分析来提升运维水平。
基于飞行实时数据,发动机制造商对维护时间点和飞行性能进行评估,而后为航空公司提供创新的租赁和服务合约。
超市很早以前就通过天气预报数据来决定冰淇淋和烧烤食物的上架时间。现在,业者开始基于客户忠诚度计划搜集的购物习惯数据,决定在第二天什么时间点提供那些易腐烂的商品。
在这些案例中,无论数据是结构化还是非结构化,分析的最终目的都是相同的:提升销售或降低成本。
但是,如果不在大数据上进行投资,会发生什么情况呢?也许,你很聪明,并且已经知道该在哪里进行投资以获得竞争优势和丰厚利润;或者,机缘巧合,你的成功来自于竞争对手的失误。
如果属于第一种情况,本文对你毫无意义,你已经掌握了制胜之道。如果是第二种情况,我的建议是,继续阅读本文,思考在大数据上的投入将会给企业带来什么改变。
需要考虑的问题
下面这几个简单的问题将有助于你判断是否该在大数据上进行投资:
基于企业现有的数据,你是否能产生出新的洞察?
从IT的角度,结合业务数据是否能提升企业的效率?
以一个客户的角度出发,考虑企业是否能更好地为你服务,提升你的效率,让CFO不再愁眉苦脸?
对于同行业或者其他行业那些宣称通过大数据取得成功的企业,你是否会感到嫉妒?
如果你的同事(比如首席营销官)很快就会来问你是否具备大数据方面的能力,你会不会感到担心?如果答案是否定的,依据是什么?
对于上述问题中的任何一个,如果你的答案是肯定的,那么也许就应该考虑以下几个方面:
投资规划
挖掘大数据的应用场景与其他新技术的投资并无二致。驱动因素?风险忍受度?改变现状后的预期结果?能挖掘什么新的价值,其中有形和无形价值的比例各是多少?
以上问题中,没有任何一个是决定性的。但是所有问题放在一起,就足以形成最终的投资决策。如果事关新兴的理念,供应商和顾问们会竭力想在新领域打出名声,你可以好好利用这一点。
当新技术在各个行业分块或业务链条上的应用还不充分时,供应商和系统集成商会更愿意在商业开发上进行投入,这就为你尽可能降低成本提供了机会。
合作伙伴选择
为什么只挑选一家合作伙伴?同时引入多家合作伙伴对同一组数据进行挖掘,这在业界已经有诸多正面的案例。各家合作伙伴之间会进行真正的竞争,从自身视角出发分析数据。在这种情况下,客户通常会得到数个不同的结果,其中任何一个都可能是真正的洞察。
但是,当你期望最终获得有形价值时,要做好准备面对各种意想不到的结果。
对各类结构化数据的可视化无疑会对决策有所帮助。可视化能够让数据变得更加容易理解,提升附加价值。然而,当把同样的结构化数据与非结构化数据以及具体的上下文相结合时,真正的洞察才会产生。
要鼓励你的大数据供应商打破传统思维,向你展示之前从未想象过的结果。尽管实际工作完成之前无法预测是否能带来价值,但是这至少能让你从全新的角度去思考业务。一旦获得了新的视角,你将从此脱胎换骨。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15