使用大数据,就像在沙子里淘金
在过去几年,我们这个世界上的数据的增长速度,相当于之前5年、10年的50倍。
大数据为什么在这个点上爆发?主要原因是,摩尔定律使得存储的数据量空前扩张。与此同时,类似RFID那样的传感器技术也得到了质的提升。于是,就出现了这样的例子——
当某著名服饰品牌把RFID的芯片放在衣服上,如果你觉得一件衣服挺好看,拿到试衣间试,试完了却没买,芯片依然能记录下你试穿了多长时间。由此,他们就会去研究,到底是什么问题,让你没有选择他们的产品。至于你试都不试,他们则认为这很可能是店铺陈列摆放的问题。基于由上述这些数据收集而产生的质量管理和服务改进,这家店的销售额在过去10年里涨了5倍,非常可观。
另外一个例子,如今也非常有名了。美国第二大连锁百货TARGET将大数据运用于营销。某天有一位父亲特别生气,到店里来投诉。他说我的女儿只有14岁,可是你们给她推送母婴广告。结果过了一个星期,经理打电话回访这个父亲,这位父亲表达了歉意:上次是我态度不好,我的女儿是怀孕了。事实就是这样:如果你总是在淘宝上买生活用品,你们家什么时候需要买手纸了,马云可能比你的家人知道得还早。
随着上面的例子越来越多,有人开始认为,我们现在正处在人类历史上的又一个节点:机器的智能有可能在我们这个时代超过人的智能。
这种推理是怎么来的呢?
持上述观点的人认为:由于计算机的速度会不断增加,而人的能力发展基本上是平行的,所以未来某个时间点上,机器智能极有可能超过人的智能。这时,如果我们善于利用大数据的特征,可以达成两件事。其一,可以换一种思维方式来看待世界。其二,可以制造更先进的机器智能。
换言之,大数据就像在一堆沙子里面淘金。当你利用到相较于今日一万倍的数据时,量变到质变的跃升就很可能产生。从这个意义上来讲,未来所有的公司,都可能是要使用大数据的公司。
真正的受益者不会超过2%
未来世界的机器是不会控制人的,但制造智能机器的人,能通过机器控制其他人。比方说,经常去京东、淘宝买东西,实际上就是被他们控制; 天天用微信,某种程度上就被腾讯控制。
在大数据时代,很多商业模式也会变。比如,过去有一个“吉利模式”,买一个刀架送一个刀片。然后吉利靠消费者后期的耗材消费挣钱。可如今,一个冰箱品牌做了这么一件事。它内置于冰箱的芯片可以获知你家有多少牛奶、多少鸡蛋。当这些东西没了,它就会通知给你送来。换言之,这个冰箱除了冷冻功能,还被赋予了“货架”功能。
未来世界里的大数据思维,将细到每一个人、每一个商品、每一笔交易,逐渐影响我们的生活,改变整个生态链。与此同时,技术的发展也不可能人为地停止下来。
但很遗憾的是,在任何一次重大的技术革命中,一开始受益的都是2%的人。正如蒸汽机的发明,第一波受益的,是发明家、工厂主,这是18世纪晚期的事。但连英国维多利亚女王迎来她特别荣耀的时代,都是19世纪中期的事了。美国工业革命,受益的是爱迪生。如今特斯拉也挣了很多钱,受益的是支持他们的GP摩根以及各种关联制造商。老百姓什么时候开始受益呢?是不是过两年,其余98%的人就能受益了呢?不是,可能要经过两代人,半个世纪后,才能有98%的人受益。
美国IT革命,从摩尔定律的发明到今年正好是51年,很多人还没有受益。美国和中国很幸运,踏准了信息革命的节奏。但在我们的周围,南美洲、整个阿拉伯地区、东欧地区,甚至南欧,对IT革命的贡献几乎为零。我希望大家能看到站在你们后面的这98%的人。你们要关注这些,更要坚守住这2%的位置。
学习是一辈子的事
前一阵谷歌的AlphaGo非常火,于是有人问,AlphaGo的学习速度太惊人了,和以前的学习方法相比,未来年轻人的学习,是否只剩下思维模式上的突破?
后来我一个同事,他的孩子在学下棋,他就说那我们去把AlphaGo这个程序打开,看看它到底怎么下的,让孩子学学。结果打开一看,发现根本没法模仿,里面就是一个很简单的数学模型,然后一堆乱七八糟的数字。所以,机器产生智能和人产生智慧完全是两回事。但我想讲两点——
第一,机器最擅长的工作还是重复性。AlphaGo 差不多有50个左右的版本,有时候一天就下好几千盘棋。但人类最重要的一个能力是创造力。在我们祖先活下来的地方,比如走出非洲那会儿,除了生存,还有乐器、创造性和想象力。
第二,比学习方法、思维模式更重要的,其实是终身学习。学习是一辈子的事,这点最重要。我原来周围有一些人比我的学业能力要强一些,但他们一旦拿到博士,就把书本一扔,从此不再学习,慢慢他们的知识就老化了。而我虽然不是一个有很好学习方法的人,却是一个能够不断学习的人。
正如你和你的父辈要掌握的技能早已不同,如今,说任何一个专业如何好、如何坏都失之简单。现在来讲,已经很难有专业比人的寿命要短,因此,你要做好在不远的未来换专业的准备。也许你的专业会过时,但你利用最先进的技术,比如计算机,来学习和提升自己这件事,永远不会过时。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03