
大数据分析发展的机遇:政策与场景需求
近日,全球领先的大数据分析服务供应商Teradata天睿公司正式举办“2016 Teradata大数据峰会”。作为大中华地区规模最大的数据分析盛会,全球的大数据专家、商业领袖、企业用户共聚一堂,分享构建下一代数据分析生态系统的权威观点,提出融合数据仓库、开源技术和大数据咨询服务,帮助各个行业的客户推动其实现数据驱动型转型。
会后,记者专访了Teradata天睿公司营销与业务拓展副总裁Mikael Bisgaard-Bohr,针对一些行业性的大数据应用话题进行了详细探讨。
Bisgaard-Bohr先生长期负责的零售行业,他表示纵观中国地区以及全球范围内的行业市场,全渠道的线上和线下客户信息整合促进销售联动已经成为流行趋势。另外,在商品定价、供应链管理等方面也实现了参照数据分析来决策的管理。
他还谈到,随着“工业4.0”、“中国制造2025”等政策的提出,企业更加强调数字化业务转型的重要性。“我们有很多制造业用户,很多是做B2C的企业,而正是B2C带来了丰富的数据。现在万物都在智能化,这也是新的市场增长点,这也是为什么Teradata改变技术战略,强调打造一个包容不同技术的生态系统。”
Bisgaard-Bohr补充说,“我们看到数据在呈指数级的增长,但是IT预算却不是这样。因此在技术上,Teradata会坚持创新,而业务模式上我们也会去不断地突破,从而能够让制造业客户把我们的技术利用到他们核心生产的系统里。”
目前,工业4.0的推进进程会遇到诸多不确定因素,特别是在智能化之后的数字分析方面。在制造行业,多数用户主要是工程师,与零售行业不同的是,他们不善于使用数据。他通过飞机引擎制造厂的内部管理与销售案例介绍,阐述了现在工厂中进行数据采集变得十分简单,成本也会变得非常廉价,甚至个人的数据也可以轻松采集。
“比如,以前制造企业认为流水线工人的工作流程设计是合理的,但是根据数据显示,工人为了组装重型工业设备,通常要单手举起一个非常重的部件,然后又弯下身拿起工具,再做一些组装操作。整个流程设置是极其不合理的,因此就需要工作流程的再造。一年之前,如果没有Fitbit可穿戴装置收集这方面的数据,基本上是不可能得知这些结论的。但是现在通过收集这些数据,解决了工会投诉的一系列问题,并提供了改进方向。现在,我们可以用这个数据以更快的速度解决很多其他问题。”
从这些例子可以看出,无论是工厂人员还是普通消费者,都会越来越意识到数据的价值,尤其是如何使用数据。信息内容规模和多样化的激增正在带来数据驱动型企业优化分析架构技术的显著变化。Teradata认为下一代数据分析解决方案将是商业和开源技术的融合,甚至不断增加的云部署技术等多元化技术的综合,而Teradata正在着眼数千名企业客户需求,帮助他们探索从传统分析解决到下一代分析生态系统的快速演进。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07