
大数据分析发展的机遇:政策与场景需求
近日,全球领先的大数据分析服务供应商Teradata天睿公司正式举办“2016 Teradata大数据峰会”。作为大中华地区规模最大的数据分析盛会,全球的大数据专家、商业领袖、企业用户共聚一堂,分享构建下一代数据分析生态系统的权威观点,提出融合数据仓库、开源技术和大数据咨询服务,帮助各个行业的客户推动其实现数据驱动型转型。
会后,记者专访了Teradata天睿公司营销与业务拓展副总裁Mikael Bisgaard-Bohr,针对一些行业性的大数据应用话题进行了详细探讨。
Bisgaard-Bohr先生长期负责的零售行业,他表示纵观中国地区以及全球范围内的行业市场,全渠道的线上和线下客户信息整合促进销售联动已经成为流行趋势。另外,在商品定价、供应链管理等方面也实现了参照数据分析来决策的管理。
他还谈到,随着“工业4.0”、“中国制造2025”等政策的提出,企业更加强调数字化业务转型的重要性。“我们有很多制造业用户,很多是做B2C的企业,而正是B2C带来了丰富的数据。现在万物都在智能化,这也是新的市场增长点,这也是为什么Teradata改变技术战略,强调打造一个包容不同技术的生态系统。”
Bisgaard-Bohr补充说,“我们看到数据在呈指数级的增长,但是IT预算却不是这样。因此在技术上,Teradata会坚持创新,而业务模式上我们也会去不断地突破,从而能够让制造业客户把我们的技术利用到他们核心生产的系统里。”
目前,工业4.0的推进进程会遇到诸多不确定因素,特别是在智能化之后的数字分析方面。在制造行业,多数用户主要是工程师,与零售行业不同的是,他们不善于使用数据。他通过飞机引擎制造厂的内部管理与销售案例介绍,阐述了现在工厂中进行数据采集变得十分简单,成本也会变得非常廉价,甚至个人的数据也可以轻松采集。
“比如,以前制造企业认为流水线工人的工作流程设计是合理的,但是根据数据显示,工人为了组装重型工业设备,通常要单手举起一个非常重的部件,然后又弯下身拿起工具,再做一些组装操作。整个流程设置是极其不合理的,因此就需要工作流程的再造。一年之前,如果没有Fitbit可穿戴装置收集这方面的数据,基本上是不可能得知这些结论的。但是现在通过收集这些数据,解决了工会投诉的一系列问题,并提供了改进方向。现在,我们可以用这个数据以更快的速度解决很多其他问题。”
从这些例子可以看出,无论是工厂人员还是普通消费者,都会越来越意识到数据的价值,尤其是如何使用数据。信息内容规模和多样化的激增正在带来数据驱动型企业优化分析架构技术的显著变化。Teradata认为下一代数据分析解决方案将是商业和开源技术的融合,甚至不断增加的云部署技术等多元化技术的综合,而Teradata正在着眼数千名企业客户需求,帮助他们探索从传统分析解决到下一代分析生态系统的快速演进。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19