
2016年中国大数据行业市场运行现状分析
随着互联网、云计算和大数据产业的加速发展,我国数据中心产业也进入了大规模的规划建设阶段。2011年到2013年上半年全国共规划建设数据中心255个,已投入使用173个,总用地约713.2万平方米,总机房面积约400万平方米。
2010年中国数据中心总数量已经达到504,155个,市场总规模达到92亿美元,IDC预测该市场在2010年至2015年仍将保持两位数的增长率,2015年该市场规模将达到约157亿美元。
2009-2015年数据市场场规模走势
一、数据中心市场的发展分析
1、数据中心市场的发展初期
数据中心的概念随互联网进入中国,第一次掀起了建设数据中心的热潮。但是由于互联网在中国尚未普及,在用户数、内容、应用等各方面都存在明显的局限性,用户对数据中心尚未产生有效的需求。在2001年的互联网泡沫破灭之后,数据中心的发展很快进入了蛰伏期。
2、数据中心市场的发展中期
随 着互联网的普及和我国信息化建设的发展,无论是国民经济还是百姓生活对信息技术的应用和依赖都日益广泛和深入,从服务提供方和用户方两端都纷纷投入巨资建设数据中心。数据中心行业经历了从小到大、优胜劣汰的过程,作为重要的IT基础设施,数据中心迎来了快速发展的黄金期。
3、数据中心市场的发展成熟期
互联网的发展和国民经济各主要行业的信息化建设日趋成熟,移动互联网、云计算等新兴技术和商业模式不断涌现,数据中心的数量不断增加,规模不断扩大。与此同时,行业内越发重视运营的效率和资源整合的能力,建设绿色数据中心成为未来数据中心发展的方向。
十二五时期,中国IT投资规模将达到1,600亿美元,IT投资的增长促进了数据中心市场的发展,数据中心的建设和升级反过来又将带动包括服务器、存储和基础设施等相关IT市场的增长。
IDC将数据中心按照不同的规模划分为五个等级,对该市场的研究包含了从服务器机柜到数千平米的企业级数据中心的各类型数据中心的情况,并且从最终用户的IT投资和服务提供商的外包服务等不同角度对数据中心整体市场进行跟踪和分析
二、数据中心市场分析
各政府部门对战略性新兴产业的大力扶持,以及对云计算、物联网、宽带和下一代网络的发展的高度重视,都给中国数据中心市场的发展带来极大利好因素。相应政策 的引导和落实,客观上促进了数据中心市场的快速增长。地方政府大规模建设云计算园区,客观上促进了数据中心市场的发展。
国内市场规模破百亿,未来年均增长超30%,数据显示 7 月30 号发布的中国大数据应用行业的报告显示,预计2015 年中国大数据市场营销规模超过100 亿,2018 年将达到258.6 亿人民币,环比增长率达37.2%。
2015-2018 年中国大数据市场规模预测(单位:亿元)
大数据在全球范围内的市场规模同样巨大,根据IDC 发布最新研究结果,预测到2018 年全球大数据技术和服务市场的2018 年的复合年增长率将达到26.4%,规模达到415 亿美元,是整个IT 市场增幅的6 倍。从行业结构来看,大数据应用主要集中在金融、通信、销售和政府领域,在医疗和旅游行业也有应用,但占比相对较低。
2014 年中国大数据市场行业结构图
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23