京公网安备 11010802034615号
经营许可证编号:京B2-20210330
2016年中国大数据行业市场运行现状分析
随着互联网、云计算和大数据产业的加速发展,我国数据中心产业也进入了大规模的规划建设阶段。2011年到2013年上半年全国共规划建设数据中心255个,已投入使用173个,总用地约713.2万平方米,总机房面积约400万平方米。
2010年中国数据中心总数量已经达到504,155个,市场总规模达到92亿美元,IDC预测该市场在2010年至2015年仍将保持两位数的增长率,2015年该市场规模将达到约157亿美元。
2009-2015年数据市场场规模走势
一、数据中心市场的发展分析
1、数据中心市场的发展初期
数据中心的概念随互联网进入中国,第一次掀起了建设数据中心的热潮。但是由于互联网在中国尚未普及,在用户数、内容、应用等各方面都存在明显的局限性,用户对数据中心尚未产生有效的需求。在2001年的互联网泡沫破灭之后,数据中心的发展很快进入了蛰伏期。
2、数据中心市场的发展中期
随 着互联网的普及和我国信息化建设的发展,无论是国民经济还是百姓生活对信息技术的应用和依赖都日益广泛和深入,从服务提供方和用户方两端都纷纷投入巨资建设数据中心。数据中心行业经历了从小到大、优胜劣汰的过程,作为重要的IT基础设施,数据中心迎来了快速发展的黄金期。
3、数据中心市场的发展成熟期
互联网的发展和国民经济各主要行业的信息化建设日趋成熟,移动互联网、云计算等新兴技术和商业模式不断涌现,数据中心的数量不断增加,规模不断扩大。与此同时,行业内越发重视运营的效率和资源整合的能力,建设绿色数据中心成为未来数据中心发展的方向。
十二五时期,中国IT投资规模将达到1,600亿美元,IT投资的增长促进了数据中心市场的发展,数据中心的建设和升级反过来又将带动包括服务器、存储和基础设施等相关IT市场的增长。
IDC将数据中心按照不同的规模划分为五个等级,对该市场的研究包含了从服务器机柜到数千平米的企业级数据中心的各类型数据中心的情况,并且从最终用户的IT投资和服务提供商的外包服务等不同角度对数据中心整体市场进行跟踪和分析
二、数据中心市场分析
各政府部门对战略性新兴产业的大力扶持,以及对云计算、物联网、宽带和下一代网络的发展的高度重视,都给中国数据中心市场的发展带来极大利好因素。相应政策 的引导和落实,客观上促进了数据中心市场的快速增长。地方政府大规模建设云计算园区,客观上促进了数据中心市场的发展。
国内市场规模破百亿,未来年均增长超30%,数据显示 7 月30 号发布的中国大数据应用行业的报告显示,预计2015 年中国大数据市场营销规模超过100 亿,2018 年将达到258.6 亿人民币,环比增长率达37.2%。
2015-2018 年中国大数据市场规模预测(单位:亿元)
大数据在全球范围内的市场规模同样巨大,根据IDC 发布最新研究结果,预测到2018 年全球大数据技术和服务市场的2018 年的复合年增长率将达到26.4%,规模达到415 亿美元,是整个IT 市场增幅的6 倍。从行业结构来看,大数据应用主要集中在金融、通信、销售和政府领域,在医疗和旅游行业也有应用,但占比相对较低。
2014 年中国大数据市场行业结构图
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06