
深度学习不能跟人工智能画上等号
近日百度宣布在一部超算系统Minwa上部署了#深度学习#算法,进而在ImageNet图像识别测试中取得了只有5.98%错误率的新纪录。无独有偶,Facebook也刚刚宣布对部分深度学习代码开源,以推进这项技术在业界的普及。深度学习这个概念越来越频繁地出现在媒体报道中,那么究竟什么是“深度学习”,它又对我们的生活有什么影响与好处呢?
让计算机拥有接近人类的智能水平是IT行业最伟大,也是最难实现的梦想。虽然科幻作品中早就出现了匹敌甚至远超人类智能水平的计算机、机器人,但尴尬的是现实中的计算机技术即使经过六十余年的指数发展也仍然与真正的“智能”相去甚远。甚至一只小鸟的大脑都要比现时最强大的超级计算机聪明许多。虽然计算机拥有恐怖的计算能力、数据存储空间,但是一直以来这些能力却难以用来模拟复杂的思维,而只能执行既定的运算任务。
“深度学习”是通往#人工智能#的漫漫长路上的一项重要的技术。“深度”是一种专业术语,表示将某种复杂问题分解成简单问题的层数。深度学习可以理解为将一项复杂的概念抽象为多层简单概念的叠加,然后通过简单概念的判断和学习来理解复杂的整体。例如让计算机从一张图片上识别出一只小狗,过去的做法是由人给图片加注“图中有萌犬一只”之类的标签,然后计算机根据标签来进行分类。基于深度学习算法的系统的做法完全不同:给计算机大量的有小狗内容的图像,然后系统会自动从这些图像中总结规律:所有的图像中都有一团物体、这些物体都有几条腿、有尾巴、有脑袋、脑袋上有两只可爱的眼睛……经过大量的训练,计算机最终总结出“小狗”的图像特征,之后就可以自动识别出图像是否包含这些特征。这一学习过程不需要人类的太多参与,基本上是自动化的。与过去简单的“标签识别方式”相比,深度学习是对动物大脑神经网络的一种简化模拟,离“智能”的目标更近了一步。
深度学习技术对现代IT产业意义非凡。随着PC、智能手机的广泛普及,互联网上产生了大量需要计算机来处理的数据。用户对数据处理的水平要求也不断增加。诸如复杂图像识别、语音识别、自动翻译等应用的需求越来越强烈,而这些正是深度学习技术大显身手的时候。大型计算机网络可以通过海量数据的训练不断提升自己的认知水平,进而完成许多过去只能由人工完成的工作。
典型的例子就是谷歌、苹果和微软等企业推出的智能语音助手服务。这些服务将用户的语音指令发送到数据中心,并由中心的计算集群进行分析、处理,再将结果传回终端设备。这一过程中最困难的一步就是识别用户指令的实际含义,传统的算法在这里很难起到作用,解决方案就是深度学习。使用这些服务的用户越多、系统得到的训练越多,整体服务质量就会越高。类似的应用还包括谷歌、百度等提供的智能识图服务、在线翻译服务,电商网站的机器人客服,以及堪称革命的无人驾驶技术等。
由于深度学习需要海量数据作为训练系统的“材料”,那些拥有大量用户资源的大企业在这一方面无疑有先天优势。目前,全球范围内发展这一技术的领跑者就是谷歌、Facebook、苹果、百度、腾讯等企业。其中,谷歌、苹果的相关服务,尤其是语音助手服务已经部署较长时间,也获得了大量的用户反馈。国内企业中,百度在这一领域耕耘较深,不仅模仿谷歌的“谷歌大脑”计划建立了“百度大脑”团队,还在百度识图、百度翻译等服务中应用了深度学习技术并取得了不错的成果。不过从实际使用体验来说各大企业的深度学习技术仍处于发展初期阶段,服务质量与用户的心理预期仍相去甚远。苹果的Siri上线后就经常被用户“调戏”,总是难以真正理解操作者的意图;百度测试上线图像内容自动识别服务后也陷入类似的尴尬:由于识别率较差,多数用户仅仅是将它当作是娱乐消遣的玩具尝鲜而已。总之,深度学习离改变我们的生活还有很长的路要走。
最近几年,基于GPU运算的深度学习算法成为这一领域的大趋势。此次百度创下新纪录的图像识别系统即是运行在GPU服务器集群上。GPU运算速度的快速提升也让深度学习技术有了硬件层面的有力支持。业界对这一技术的重视也鼓励研究者不断开发出更优秀的算法与模型。预计未来数年内,深度学习技术就将在多个领域真正实用化,造福广大消费者。虽然深度学习离真正的人工智能仍有较大距离,但它总算能让计算机有一点“聪明”的样子了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15