京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代,数据=财富!
拥有财富、名声、世界上的一切的男人 “商业王”,阿里巴巴,马云。说了一句话,让全世界的人都涌向了市场。“想要我的宝藏吗?如果想要的话,那就到数据上去找吧!我吧我的未来全部都放在那里。”,世界开始迎接“大数据时代”的来临。-------前言
什么是大数据呢?
故名思意大数据便是数量巨大,类型众多,结构复杂的数据集合。数据具有较小的价值,而数据的集合因为数量的众多量变引起的质变所以其价值无可估量。
数据出现的最早的时间可以追溯到18000年前,原始人类。开始用数据简单计算一些食物的储存期,还有动物的迁徙。
而中国自古以来便是数据大国,比如臣子和皇上“刚”起来后一般会骂,“谓之殷商”意思是你TM和昏君商纣王有什么区别。如果换成数据就会是,根据历史数据表明你和商纣王的昏庸度相似百分之百!
来人!拉出去砍了!
恩恩,这就是中国数据的具体应用 ——
数据一般就是一种同过去发生过的事情与现在进行比较的过程,从而得出结论。
而从经济角度来说“历史只有工业革命前后之分。”之所以如此说,是因为工业革命之前世界GDP并没有多少的变化,都在一个较低的水平,都处于“马尔赛斯模式”之中就是人口就那么多,战争抢地后生产面积变大,生育率变高,收入变高。但是由于土地就那么多生产生活物资也就那么多于是总是徘徊在一个同生产率平衡的人口上。
而工业革命之后西欧国家GDP出现了一个明显变化,从公元元年的450美元增长到1820年时的1204美元,英国作为工业革命的发源国也大致如此。而从1820年到2001年的180年里,世界人均GDP从原来的667美元增长到6049美元。从数据可见科学技术的发展对人类的影响是巨大的 !
而随着互联网云时代的来临,进行了一个整个世界数据的整合于是大数据时代的基础!
而大数据的历史最早可以追溯到十八世纪八十年代,美国统计学家 赫尔曼。霍尔瑞斯为了统计人口数据而发明一台电动器来读卡片上的洞数,让原本应该耗时8年的人口普查活动提前七年结束由此引发在全球数据处理的新纪元。 2008来年末计算机社区联盟发表了一份有影响力的白皮书《大数据计算;在商务,科学和社会领域创建革命性突破》阐述了大数据对于市场的运用和未来前景。于是大数据宣告正式进入世界最具有价值和影响的行列!
那么说说大数据的现代吧!
2015年发生了很多大事,许多我都不记得了。只记得阿里巴巴的支付宝,和微信的交易系统打起来了。国家央行的数据表明,因支付每年产生的利润为十多亿。那么对于这么两家身价千亿的公司来说这十多亿为什么挣得如此凶厉呢?
其实他们为的不是那十几亿的收益,而是数据,用户达到消费数据!
QQ收集着你的生活交友数据。
支付宝微信收集你的支付信息。
京东,淘宝收集着你的消费信息!
可以说生活中你用的所有APP所有关于互联网应用都无时无刻的收集你所有的信息。数据便是将你的个人用收集的信息将你刻画的越来越清晰。 拿现在来说,我们每次逛淘宝的时候淘宝就会在你的主页面推荐一些东西。如果细心的人就会发现给你推荐的东西非常适合你。价格合适,而东西正好你想买的。这便是根据你以前阅览的页面店铺以及消费情况而具体推荐的。
也可以说成你每天的工作所做的事情都被一一记录下来,形成数据最后成为你得个人数据资料库!
而数据收集越详细便能将不同的人分为不同的群体,从而提供相应的服务。不光如此他还可以使你发现新的商业价值,最大的好处是以一种全新的思维放弃处理事情!
数据垄断
拥有大数据的公司,特别是可以实时获得大量各类用户数据的互联网公司,它们通过分析这些数据不断优化自己的系统,别的公司几乎已不可能撼动它们的地位,小公司虽然有时可以通过这些大公司提供的API调用一些数据,但关于用户行为统计的数据现在没有公司会无偿公布,这便成为一种对数据的垄断,在信息时代,对数据的垄断,也就是对信息的垄断,对资源的垄断。
比如阿里巴巴,腾讯,还有金融业的彭博,路透都是数据垄断行业!
垄断是不可避免的,数据=财富的时代不远了!
数据垄断当然是不好的,但是现状无法改变这也是无能为力的,至少我是想不到什么办法!但是我相信某天数据将会公开。毕竟世界都是向着好的方面前进的嘛!
尾言
大数据的出现只会让这个世界越来越好,他将会提供更好的市场空间。虽然不可避免的会出现这样或者那样的问题,但是那次技术革命不出问题,蒸汽革命还影响环境呢!但是对人类的作用也是巨大的,数据也是一样!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08