
大数据时代的质量机遇
出差在外,想选择一家适合自己的酒店。只需在手机App上输入对酒店的个性化要求,手指轻轻一按,几十家甚至上百家酒店就立马一一呈现在眼前。卫生条件、服务态度、餐饮特色、地理位置……通过查看大量网友的点评和酒店分数排名,你可以在短短几分钟内方便快捷地寻找到自己心仪的酒店;出门办事,同样只需在App中下单,2~3分钟后一辆专属于你的专车就会到达指定地点。车上不仅提供了标配的矿泉水和充电器,还有司机发自内心的热情服务。
这只是我们身边依靠大数据改变生活方式的两个例子。在我们所享受到的方便快捷、优质服务的背后,就是大量以往消费者消费数据的支撑,而你对此次消费或服务的评价和反馈又将为这个大数据库增加新的信息。8月19日,国务院常务会议通过了《关于促进大数据发展的行动纲要》,提出要开发利用好大数据这一基础性战略资源。毫无疑问,我们已经进入了大数据时代。那么,大数据将给中国质量带来什么?
质量就是数据
武汉大学质量发展战略研究院早在几年前就开始了质量大数据的研究,取得了不少成果。几年来,他们对质量大数据的语义进行了分析,建立了食品、电器、通用产品三个语料库,建立了大数据监测网站和数据分析模型。
在谈到“质量”与“大数据”的关系时,院长程虹阐明了自己的观点:“质量离不开数据,质量的本质就是数据。”程虹说,无论在产品的生产环节还是在销售环节,都要依赖于大量的数据。在产品的检验检测中,离不开数据;在政府的质量监管中,同样离不开数据。
《关于促进大数据发展的行动纲要》中特别提到,要在城市建设、社会救助、质量安全、社区服务等方面开展大数据应用示范。大数据对质量的重要性已经成为很多质量人的共识。中国计量学院经管学院质量发展研究院教授周立军认为:“大数据是信息公开的基础,对于提高决策的科学性、有效性都有很大的帮助;大数据对开展质量预警的作用也很明显,可以让发出的质量预警更加精准;在建立企业信用系统过程中,大数据也被寄予厚望,能够发挥很大作用。”
缺乏消费领域的质量数据
山东大学质量管理研究中心主任温德成在谈到质量大数据时,首先讲到的是质检系统的质量大数据。“质检系统收集了很多质量数据,但这些数据还没有得到很好的整合、分析和应用。”温德成提到了质量监督抽查,“监督抽查中获得的产品质量数据很多,绝不仅仅是一个合格率、不合格率的问题。如何利用好这些数据,是大数据时代质检部门应该首先思考的问题。”温德成也介绍,在国外,掌握大量数据的其实并不是政府,而是一些社会机构。这些机构收集了大量来自市场、来自消费者的评价和反馈,这些数据正是目前我国所缺乏的。
缺乏消费领域的质量数据,这也是程虹从事质量大数据研究以来最深刻的感受。“以前,质量控制是基于生产过程的控制;但是现在,成功企业的质量控制恰恰不是基于生产导向,而是基于消费导向。也就是说,来自消费者、来自市场的数据比来自生产过程中的数据更有意义。遗憾的是,我们现在没有这部分数据,我认为这是我国质量大数据发展的一个瓶颈。如果一个企业不知道自己的客户需要什么、喜欢什么,不掌握这些质量大数据,要想做好产品,恐怕很难;同样地,如果一个政府不知道市场的真实情况到底是什么,不掌握这些质量大数据,要想做好质量监管,同样也很难。”
技术将发挥重要作用
选餐厅先看大众点评,选酒店先看酒店分数排名,选专车先看以往乘客评价……互联网上这些大量的数据就是来自消费者、来自市场。专家们认为,利用好质量大数据,不仅可以解决政府监管的很多难题,甚至可以迎来中国质量发展的一次革命性机遇。
作为一名普通消费者,程虹说自己最近喜欢上了一件事情,那就是坐Uber(优步)专车。在自己的一篇文章里,程虹详细分析了专车服务的质量大数据是如何颠覆传统的出租车运营监管机制。出租车最大的难题,无非就是信息不对称,也就是“人找不到车,车找不到人”。但是,互联网尤其是移动互联网,包括实时定位技术,使司机和乘客不用付出更多的搜索成本,就能找到彼此。因为大数据让双方之间信息透明、信息对称了。至于政府所关心的车辆服务质量问题,市场其实早就给出了答案,根本用不着政府操心,乘客的评价和结算的延迟支付,都会让专车司机不敢稍有懈怠地去提供高质量的服务。“以前让政府头疼的高峰时间打不着出租车、出租车服务质量不好等难题,在大数据时代,就这样轻松地被市场解决了。政府的角色应该从出租车的管制者变成大数据平台的提供者。”程虹认为,这是典型的质量大数据解决政府做不到的事情的应用案例。
程虹坦言,技术一小步,制度一大步。“大数据这个新技术已经来了,我们的监管制度也必须发生变化,甚至是革命性的变革与之配套,才能让新技术真正发挥出神奇的力量。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23