
大数据分析中国人的存钱观念发生着怎样变化?
为何中国人辛苦挣钱后,并不急着吃吃喝喝或投资,而偏爱存银行?为何有时,中国人的存款会“过山车”般地涨跌?为何北京的人均收入明明比上海少,人均存款却比上海多2 6万?
过去十年,我国人均收入保持高位增长。奇怪的是,个人存款增幅比收入增幅还大,这说明我们越有钱,越爱存银行。
为何中国人辛苦挣钱后,并不急着吃吃喝喝或投资,而偏爱存银行?为何有时,中国人的存款会“过山车”般地涨跌?为何北京的人均收入明明比上海少,人均存款却比上海多2.6万?
1.哪个地方的人存款最多?
2015年人均存款排名前10的省份是:北京、上海、浙江、辽宁、天津、江苏、广东、山西、重庆、陕西。
再把视线往前推,2006年末,我国个人存款总量16.2万亿,人均存款1.2万。
弹指10年,数字巨变。2015年末,我国个人存款总量增至54.6万亿,人均存款4万。
人均存款4万是啥概念呢?
去年谷歌的调查大数据报告显示,14%受访美国人存款高于10000美元,5%的受访者存款为5000-9999美元。单从存款看,中国人至少比80%的美国人更“富”。
吊诡的是,这10年中除2007年外,存款增幅都高于收入增幅,即我们挣钱越多,越爱存银行。
2007年的反常是因为当年的“牛市”。这一年,股市创下6124点历史最高记录,沪深股市开户数达1.3亿户,较年初新增81.9%,引发每月数以千亿的个人存款向股市“大搬家”,彼番景象为建国以来前所未见。
但2008年末,存款增幅却“掉头”升至26.3%,为10年之最。这一年,金融危机爆发,全年上证综指下跌64.7%,深成指重挫63.4%。在股市的冒险失利,存款又“乖乖地”往银行回流。
Mr.Data读数回头看这10年,虽然存款增幅上下波动,2012年后却逐步下滑,并且越来越接近收入增幅。原有的存钱观念正在消退,老百姓更乐意投资、消费了。预计未来几年,出现存款增幅低于收入增幅的可能性很大。
2.收入与存款,谁“蹿”得快?
在已公布2015年人均收入实际增幅的13个省份中,存款增幅高于收入增幅的省份是:辽宁、安徽、福建、山东、河南、湖南、海南、陕西、宁夏;存款增幅低于收入增幅的省份是:北京、上海、浙江、广东。
有意思的是,存款增幅低于收入增幅的北京、上海、浙江、广东,均为经济发达地区。这些省份在2013年、2014年,即最近的两三年内,存款增幅才开始陆续地低于收入增幅。
Mr.Data读数中国人存钱的热情,已经在经济发达地区消退。生活在发达地区的人们,除了收入更可观、社会保障更完善、观念更开放外,丰富的“供给侧”满足了不同的需求,制造了庞大的消费群体,这也是诱发人们多消费、少存钱的动因。如卖家云集、配送快速的长三角电商产业,依托多样“供给侧”,实现“江浙沪包邮”,刺激买买买。
3.收入高的地方,存款一定多吗?
通过对比,Mr.Data还发现了有趣的现象:人均收入高的省份,人均存款未必多。
以北京、上海为例。2015年北京人均收入48458元,而上海人均收入49867元,为全国最高。
但存款增幅方面,北京以5.7%高于上海的2.8%,增幅为上海的2倍。人均存款方面,北京以12.3万高于上海的9.7万,高出上海2.6万。
这种现象在2014年同样存在。
这说明,北京人虽然赚得没上海人多,但存钱热情却高于上海人,背后原因或是文化观念、生活压力的差异。
Mr.Data读数上海作为海派文化浓厚的商业城市、早期开放的国际都会,消费主义更早、更广泛地被接受和认同,中产阶级、白领为了追求更好的生活品质,成为刺激消费的驱动力。与上海不同,北京作为政治权力集中区域,公务人员群体庞大,消费可能受到权力的隐形约束。这些因素,都可能是造成存款差异的原因。
4.有钱不是不想花,而是不敢花
爱存钱,背后是根深蒂固的国民习惯。
勤俭持家,是国人从小就受到的教育,把辛苦挣来的票子攒起来,背后有文化的驱动力。
但除了这些,存钱更是现实考量,不是不想花,而是不敢花。
第一,存钱源自未来不确定性。饿过肚子的人,更明白何为“手中有粮、心中不慌”,上世纪六、七十年代生活过的人们,对这感触更深。而当下,社会保障有待完善,面对买房、教育、就医、养老等压力,许多人也难言轻松。
第二,存钱还因为投资的风险太大、渠道有限。入股市,可问问去年被“割韭菜”的股民,心理阴影面积有多大;买基金,信息不畅、经验缺乏,让人打退堂鼓;买黄金,大妈疯抢本身就是投资渠道缺乏的表现。最后,人们宁愿把钱放银行“吃”利息。
当然,数据也表明,中国人的存钱观念正在发生微妙变化。
可见,当社会发展到一定水平,人们的生活更宽裕、社会保障更完善后,存钱观念可能发生改变,热情将会消退。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08