
大数据分析中国人的存钱观念发生着怎样变化?
为何中国人辛苦挣钱后,并不急着吃吃喝喝或投资,而偏爱存银行?为何有时,中国人的存款会“过山车”般地涨跌?为何北京的人均收入明明比上海少,人均存款却比上海多2 6万?
过去十年,我国人均收入保持高位增长。奇怪的是,个人存款增幅比收入增幅还大,这说明我们越有钱,越爱存银行。
为何中国人辛苦挣钱后,并不急着吃吃喝喝或投资,而偏爱存银行?为何有时,中国人的存款会“过山车”般地涨跌?为何北京的人均收入明明比上海少,人均存款却比上海多2.6万?
1.哪个地方的人存款最多?
2015年人均存款排名前10的省份是:北京、上海、浙江、辽宁、天津、江苏、广东、山西、重庆、陕西。
再把视线往前推,2006年末,我国个人存款总量16.2万亿,人均存款1.2万。
弹指10年,数字巨变。2015年末,我国个人存款总量增至54.6万亿,人均存款4万。
人均存款4万是啥概念呢?
去年谷歌的调查大数据报告显示,14%受访美国人存款高于10000美元,5%的受访者存款为5000-9999美元。单从存款看,中国人至少比80%的美国人更“富”。
吊诡的是,这10年中除2007年外,存款增幅都高于收入增幅,即我们挣钱越多,越爱存银行。
2007年的反常是因为当年的“牛市”。这一年,股市创下6124点历史最高记录,沪深股市开户数达1.3亿户,较年初新增81.9%,引发每月数以千亿的个人存款向股市“大搬家”,彼番景象为建国以来前所未见。
但2008年末,存款增幅却“掉头”升至26.3%,为10年之最。这一年,金融危机爆发,全年上证综指下跌64.7%,深成指重挫63.4%。在股市的冒险失利,存款又“乖乖地”往银行回流。
Mr.Data读数回头看这10年,虽然存款增幅上下波动,2012年后却逐步下滑,并且越来越接近收入增幅。原有的存钱观念正在消退,老百姓更乐意投资、消费了。预计未来几年,出现存款增幅低于收入增幅的可能性很大。
2.收入与存款,谁“蹿”得快?
在已公布2015年人均收入实际增幅的13个省份中,存款增幅高于收入增幅的省份是:辽宁、安徽、福建、山东、河南、湖南、海南、陕西、宁夏;存款增幅低于收入增幅的省份是:北京、上海、浙江、广东。
有意思的是,存款增幅低于收入增幅的北京、上海、浙江、广东,均为经济发达地区。这些省份在2013年、2014年,即最近的两三年内,存款增幅才开始陆续地低于收入增幅。
Mr.Data读数中国人存钱的热情,已经在经济发达地区消退。生活在发达地区的人们,除了收入更可观、社会保障更完善、观念更开放外,丰富的“供给侧”满足了不同的需求,制造了庞大的消费群体,这也是诱发人们多消费、少存钱的动因。如卖家云集、配送快速的长三角电商产业,依托多样“供给侧”,实现“江浙沪包邮”,刺激买买买。
3.收入高的地方,存款一定多吗?
通过对比,Mr.Data还发现了有趣的现象:人均收入高的省份,人均存款未必多。
以北京、上海为例。2015年北京人均收入48458元,而上海人均收入49867元,为全国最高。
但存款增幅方面,北京以5.7%高于上海的2.8%,增幅为上海的2倍。人均存款方面,北京以12.3万高于上海的9.7万,高出上海2.6万。
这种现象在2014年同样存在。
这说明,北京人虽然赚得没上海人多,但存钱热情却高于上海人,背后原因或是文化观念、生活压力的差异。
Mr.Data读数上海作为海派文化浓厚的商业城市、早期开放的国际都会,消费主义更早、更广泛地被接受和认同,中产阶级、白领为了追求更好的生活品质,成为刺激消费的驱动力。与上海不同,北京作为政治权力集中区域,公务人员群体庞大,消费可能受到权力的隐形约束。这些因素,都可能是造成存款差异的原因。
4.有钱不是不想花,而是不敢花
爱存钱,背后是根深蒂固的国民习惯。
勤俭持家,是国人从小就受到的教育,把辛苦挣来的票子攒起来,背后有文化的驱动力。
但除了这些,存钱更是现实考量,不是不想花,而是不敢花。
第一,存钱源自未来不确定性。饿过肚子的人,更明白何为“手中有粮、心中不慌”,上世纪六、七十年代生活过的人们,对这感触更深。而当下,社会保障有待完善,面对买房、教育、就医、养老等压力,许多人也难言轻松。
第二,存钱还因为投资的风险太大、渠道有限。入股市,可问问去年被“割韭菜”的股民,心理阴影面积有多大;买基金,信息不畅、经验缺乏,让人打退堂鼓;买黄金,大妈疯抢本身就是投资渠道缺乏的表现。最后,人们宁愿把钱放银行“吃”利息。
当然,数据也表明,中国人的存钱观念正在发生微妙变化。
可见,当社会发展到一定水平,人们的生活更宽裕、社会保障更完善后,存钱观念可能发生改变,热情将会消退。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22