
能源大数据将加速推进能源产业发展及商业模式创新
能源大数据理念是将电力、石油、燃气等能源领域数据及人口、地理、气象等其他领域数据进行综合采集、处理、分析与应用的相关技术与思想。能源大数据不仅是大数据技术在能源领域的深入应用,也是能源生产、消费及相关技术革命与大数据理念的深度融合,将加速推进能源产业发展及商业模式创新。
(一)能源数据综合服务平台
该模式通过建设一个分析与应用平台,集成能源供给、消费、相关技术的各类数据,为包括政府、企业、学校、居民等不同类型参与方提供大数据分析和信息服务。该模式中,电网及相关上下游企业具有资金、技术、数据资源等方面优势,具备成为综合服务平台提供方的条件。
典型应用案例有美国奥斯汀市智慧社区项目和瑞斯康以电力线载波技术为核心的智慧城市项目等。此类项目以智能电网设备为基础,采集了包括城市路灯照明设备、室内照明设备、中央空调及分体空调设备、太阳能光伏等类型详细用电数据以及燃气、供水、供热设备数据,形成一个能源数据分析与智能管控的综合服务平台。
图1瑞斯康智慧城市项目商业模式示意图
该项目已在节能环保、新技术推广、研发测试等方面发挥了重要的平台服务支撑作用。
一是在消费者能源管理方面,为居民能源消费、住宅节能、交通出行等方面提供优化建议,促进节能环保。例如,识别环保住宅的能耗降低比例可达27%;对居民太阳能电池板安装朝向进行优化,可使发电量增加49%等。
二是为企业提供智能家电等产品开发与技术测试服务,为电力公司分时供电、定向供电提供数据参考及专业建议。例如,将电力数据和家电使用寿命、分时电价等数据结合,可提供家电性能分析、核心功能优化,并根据用户使用习惯提供相关定制化服务等。
(二)为智能化节能产品研发提供支撑
该模式主要将能源大数据、信息通讯与工业制造技术结合,通过对能源供给、消费、移动终端等不同数据源的数据进行综合分析,设计开发出节能环保产品,为用户提供付费低、能效高的能源使用与生活方式。
以智能家居产品为例,该模式既可为居民用户提供节能降费服务以及快捷便利的用户体验,也可对能源企业尤其是电力企业改善用户侧需求管理、减少发电装机等方面发挥作用。该模式中,电网企业不一定具备产品研发优势,但可利用电力数据采集与分析方面的优势,既可通过与设备制造商合作改进用户需求侧管理,也可通过共同参与研发并在产品销售中获取收益。
该模式的典型案例是美国NEST公司研发的智能恒温器产品的商业模式。该产品可以通过记录用户的室内温度数据,智能识别用户习惯,并将室温调整到最舒适状态(图2)。
NEST产品商业模式示意图
该模式可以实现产品制造商、电力企业、用户三方共赢:作为产品制造商的NEST公司免费获得合作企业提供的部分电力数据,借此完善预测算法,并通过多种方式(恒温器设备、互联网、分析报告)展示分析结果;电力企业在智能恒温器支持下,改进需求侧管理,节约发电装机与调峰成本;用户使用产品自动控制房间温度,并节省用电费用。据报道,售价250美元的Nest恒温器每年可在电费和供热开支方面为家庭节省173美元,一年时间已节省了2.25亿千瓦时的能量,相当于2900万美元费用。
该商业模式已得到谷歌公司的高度关注和认可,目前NEST公司已被谷歌公司收购。谷歌公司力图借该模式推动其在新能源领域的全方位战略布局。
(三)面向企业内部的管理决策支撑
能源大数据对能源企业自身同样具有重要价值。通过将能源生产、消费数据与内部智能设备、客户信息、电力运行等数据结合,可充分挖掘客户行为特征,提高能源需求预测准确性,发现电力消费规律,提升企业运营效率效益。对于电网企业,该模式能够提高企业经营决策中所需数据的广度与深度,增强对企业经营发展趋势的洞察力和前瞻性,有效支撑决策管理。
该模式的典型案例是法国电力公司智能电表大数据应用(图3)。法国电力在筹建大数据研究团队初期,选择用户负荷曲线为突破口,将电网运行数据与气象、电力消费数据、用电合同信息等进行实时分析,以更为准确地预测电力需求侧变化,并识别不同客户群的特点,通过优化需求侧管理,改进投资管理与设备检修管理,提升运营效率效益。其中通过优化需求侧管理,使电网日负荷率提高至85%左右,相当于减少发电容量1900万千瓦。
图3法国电力大数据支撑内部决策应用示意图
综合上述分析,未来能源大数据的应用前景主要是在已有模式的基础上,进一步发挥“粘合剂”与“助推剂”作用,推动能源产业探索建立具有“平台”特征的完整能源生态系统。“粘合剂”主要是指对其他企业的吸引力以及形成平台模式后的协同效应,“助推剂”主要是指对能源产业生产、消费革命以及企业发展转型的推动作用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01