
大数据的概念从问世到现在已有5年历史,这个概念从诞生到发展在全球引起了一次又一次热潮,经久不衰。为什么会这样?
从历史和全局战略认识大数据
大数据的浪潮翻涌至今,我认为有两个重要因素在起推动作用。第一个是人类社会在发展过程中对信息的渴求。在人类社会发展的所有时间里,信息一直是人和人类社会发展的最重要的内容。但是为什么直到5年前才“突然”出现大数据的概念?就是第二个因素——以传感技术、互联网、移动智能终端为代表的一系列新的信息技术,使得信息的获取、利用、集聚在数量上发生了突飞猛进的变化。
从这样的角度去分析,由于技术和信息内在的联系,我们会看到这两支力量在未来大数据为代表的信息时代的重要性将会进一步凸现,这是历史的角度。
我们还需要从全局的角度再来看一下大数据。2011年大数据概念产生的时候,当年4月份英国《经济学人》刊登了一篇专题文章论述“第三次工业革命”,指出大数据在其中发挥着重要作用。
是这样吗?至少我们看到了一系列重大变化:产业互联网、工业4.0、先进制造业、智能制造、中国制造2025……从中国2008年开始持续推进两化融合到两化深度融合,从电子商务到3d打印,从远程治疗到智慧治疗,从远程教育到智能教育……一系列经济和社会发展的新概念都在发生变化,我们从这样的发展变革中看到所有这些变化背后都有大数据在其中发挥着极其重要的作用。
为什么我们要从这两个角度去看大数据?由于技术进步和社会发展的需求,人类社会发展进入新的历史阶段,新的基础性技术力量和新的资源概念正在诞生。这个新的技术力量使信息技术和工业技术融合在一起,使我们从产品服务、生活管理等方面有了一个迈上新台阶的生产力构建。这个生产力构成的背后是人类社会自工业革命以来,由物质和能源建设的进步推动的社会发展演变成由能源、信息、产业三种资源共同推动社会的发展。
因此,大数据的热潮有其必然性、深刻性和广泛性。因此我们要重视大数据,用好大数据,否则便不能跟上历史发展的潮流。
从问题和价值导向来推动大数据产业
大数据技术我们面临什么问题?价值在哪?制高点在哪?
从技术的角度来看,主要有两大问题:一是大数据以每隔几年提升一个数量级的角度看,如今的计算机处理体系——以芯片为基础的处理体系机构是不是适应大数据发展的需要?答案很清晰,不是。迄今为止,以x86为代表、以arm为代表、以存储芯片为代表的三个芯片架构从逻辑上来说都不符合大数据处理的需求,所以要从芯片开始重构适合大数据发展的处理需求。也即,要有新的芯片和新的处理结构,这是问题价值制高点。当真正满足大数据处理的芯片被设计出来,谁就站上了制高点。
从产业角度看,大数据产业大概可以分为两类:一类是“技术变成产业”,就像当年数据库管理系统变成了数据库公司,当真正的大数据处理芯片和计算架构形成时还将会形成新的产业;另一类是各个企业、机构甚至个人——以后我们很多“个人”都可以变成大数据的拥有者。
千万不要小看这点,我们对历史总是很容易健忘。20年前,很多机构包括中央部门,数据库量级是以g为代表的,而今个人都可以拥有t级的数据。这样的企业、机构、个人如何使数据管理应用成本更低、效率更高,这需要产业的支撑。因此谁能为这些“个体”的大数据应用提供便利,谁就会在发展过程中形成增值的发展基础。
然而从应用的角度看,大数据最重要的含义不在上述技术和产业,而是在于,所有企业、机构和个人如何将大数据变成我们提升能力、提升竞争力、提升生活质量的来源。那么在这个命题上,当前大数据应用的主要问题是什么?
我认为第一个问题是,数据有没有用、能不能用,能不能变成提高劳动生产力和提高市场占有率、提高创新能力、降低成本提升效率的源泉。这是社会进步的根本所在,也是大数据的本质所在。
所以,不管是企业还是机构,在讲大数据应用的时候,首先要解决的问题是“大数据能贡献什么价值”,然后通过这样的分析再去看大数据在哪,怎么才能得到。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30