京公网安备 11010802034615号
经营许可证编号:京B2-20210330
三种优化方式让你的数据分析如虎添翼
每年,数据技术企业需要管理的数据量和数据类型正在不断攀升。我们平时所谓的大数据,包括了从社交网站的博文、音频和图像到成交记录、传感器信息数据和视频的的每一种信息,这些数据正在不断的增长。根据IDC,数据正在以每年40%的速度增长,并且在接下来的十年当中,这个增长速度仍将持续。
企业们正挣扎于如何有效地收集和储存快速增长的数据问题中。但是真正能让企业从数据中获利的办法就是分析那些能够改进产品质量、加快决策制定、提高消费者满意度以及优化商业流程的方法。根据戴尔的调查报告显示,那些采用大数据技术提案的企业当中,有89%的企业在公司的决策制定中显现出卓越的提升。来自于麦肯锡全球研究机构的数据显示,那些在企业内部大规模采用数据分析技术的零售商可以将他们的经营利润提高到60%以上,而那些采用数据分析技术的医疗机构可以将自己的经营成本降低8个百分点。
若想获取这样的利益,需要企业建立具有可扩展性、灵活性以及节省成本的IT基础设施。但是企业也可以利用传统的IT技术架构来满足对于数据分析的扩展性要求,但是不久之后企业就会发现,他们在追求数据分析所带来的价值和满足大量数据分析要求的道路上,将会因为IT系统的性能让数据分析量受到限制。所有的这些都让企业传统的IT架构深陷囵圄之中——不仅对于系统的数据存储量有要求,还对处理能力和网络带宽有严苛的要求。
其中最大的问题就是传统的IT系统架构需要把数据量缩小成先管的数据库格式,这种格式的大小、速度以及数据处理的规模都是有限的。“你面临的后果就是不得不丢掉这些数据或者任由他老化,因为相关的数据库仅仅能够处理这些容量的数据,这意味着你只能对所有数据的子集进行分析处理。”来自Taneja Group的一位高级分析师说。
融合式基础架构系统为我们提供了很多有效地进行大数据分析所需的资源,包括处理Hadoop的能力以及大规模存储能力。如果想让融合式基础架构系统实现大数据的分析,需要以下三种能力:
Hadoop是分布式计算的开源软件,对于大数据分析至关重要。他无疑是解决快速增长的数据处理、存储以及分析问题的不二之选。
“Hadoop的生态系统可以让你保存你所有的原始数据,因为你可以通过更多的本地磁盘增加更多的数据节点来扩展你的系统,” Matchett解释说。“因此,如果你有一个分析任务需要花费4小时的话,那么当你将数据量从100千兆字节变成200千兆字节的话,系统仍旧可以用4小时完成分析。”
存储
大量的数据就需要有相应大容量的存储能力,并且数据存储正快速不断的扩张,所以这要要求我们尽可能建立一个可以不断扩容的数据存储系统架构。但是一些融合式基础架构系统仍旧使用传统方式的储存阵列。伴随着更多快闪记忆体阵列的激增,Matchett强调了使用具有扩展储存方案的融合性基础架构的重要性。
数据处理环境的优化
和传统的架构相比,融合性基础架构总体上可以提供相对更便捷和更快速的扩展性能,性能优越的环境对于大数据分析而言可以让你的运算能力与储存能力互补干扰。“理想的状态就是让数据的计算与数据的存储相互独立进行。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27