
三种优化方式让你的数据分析如虎添翼
每年,数据技术企业需要管理的数据量和数据类型正在不断攀升。我们平时所谓的大数据,包括了从社交网站的博文、音频和图像到成交记录、传感器信息数据和视频的的每一种信息,这些数据正在不断的增长。根据IDC,数据正在以每年40%的速度增长,并且在接下来的十年当中,这个增长速度仍将持续。
企业们正挣扎于如何有效地收集和储存快速增长的数据问题中。但是真正能让企业从数据中获利的办法就是分析那些能够改进产品质量、加快决策制定、提高消费者满意度以及优化商业流程的方法。根据戴尔的调查报告显示,那些采用大数据技术提案的企业当中,有89%的企业在公司的决策制定中显现出卓越的提升。来自于麦肯锡全球研究机构的数据显示,那些在企业内部大规模采用数据分析技术的零售商可以将他们的经营利润提高到60%以上,而那些采用数据分析技术的医疗机构可以将自己的经营成本降低8个百分点。
若想获取这样的利益,需要企业建立具有可扩展性、灵活性以及节省成本的IT基础设施。但是企业也可以利用传统的IT技术架构来满足对于数据分析的扩展性要求,但是不久之后企业就会发现,他们在追求数据分析所带来的价值和满足大量数据分析要求的道路上,将会因为IT系统的性能让数据分析量受到限制。所有的这些都让企业传统的IT架构深陷囵圄之中——不仅对于系统的数据存储量有要求,还对处理能力和网络带宽有严苛的要求。
其中最大的问题就是传统的IT系统架构需要把数据量缩小成先管的数据库格式,这种格式的大小、速度以及数据处理的规模都是有限的。“你面临的后果就是不得不丢掉这些数据或者任由他老化,因为相关的数据库仅仅能够处理这些容量的数据,这意味着你只能对所有数据的子集进行分析处理。”来自Taneja Group的一位高级分析师说。
融合式基础架构系统为我们提供了很多有效地进行大数据分析所需的资源,包括处理Hadoop的能力以及大规模存储能力。如果想让融合式基础架构系统实现大数据的分析,需要以下三种能力:
Hadoop是分布式计算的开源软件,对于大数据分析至关重要。他无疑是解决快速增长的数据处理、存储以及分析问题的不二之选。
“Hadoop的生态系统可以让你保存你所有的原始数据,因为你可以通过更多的本地磁盘增加更多的数据节点来扩展你的系统,” Matchett解释说。“因此,如果你有一个分析任务需要花费4小时的话,那么当你将数据量从100千兆字节变成200千兆字节的话,系统仍旧可以用4小时完成分析。”
存储
大量的数据就需要有相应大容量的存储能力,并且数据存储正快速不断的扩张,所以这要要求我们尽可能建立一个可以不断扩容的数据存储系统架构。但是一些融合式基础架构系统仍旧使用传统方式的储存阵列。伴随着更多快闪记忆体阵列的激增,Matchett强调了使用具有扩展储存方案的融合性基础架构的重要性。
数据处理环境的优化
和传统的架构相比,融合性基础架构总体上可以提供相对更便捷和更快速的扩展性能,性能优越的环境对于大数据分析而言可以让你的运算能力与储存能力互补干扰。“理想的状态就是让数据的计算与数据的存储相互独立进行。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15